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Abstract—Non-intrusive load monitoring, or energy disaggre-
gation, aims to separate household energy consumption data
collected from a single point of measurement into appliance-level
consumption data. In recent years, the field has rapidly expanded
due to increased interest as national deployments of smart meters
have begun in many countries. However, empirically comparing
disaggregation algorithms is currently virtually impossible. This
is due to the different data sets used, the lack of reference
implementations of these algorithms and the variety of accuracy
metrics employed. To address this challenge, we present the Non-
intrusive Load Monitoring Toolkit (NILMTK); an open source
toolkit designed specifically to enable the comparison of energy
disaggregation algorithms in a reproducible manner. This work is
the first research to compare multiple disaggregation approaches
across multiple publicly available data sets. Our toolkit includes
parsers for a range of existing data sets, a set of statistics for
describing data sets, two reference benchmark disaggregation
algorithms and a suite of accuracy metrics. We demonstrate the
range of reproducible analyses which are made possible by our
toolkit, including the analysis of six publicly available data sets
and the evaluation of both benchmark disaggregation algorithms
across such data sets. This is a summary of a full paper in-press
at ACM e-Energy 2014 [1].

I. INTRODUCTION

Non-intrusive load monitoring (NILM), or energy disaggrega-
tion, aims to break down a household’s aggregate electricity
consumption into individual appliances [3]. As such, informing
a household’s occupants of how much energy each appliance
consumes empowers them to take steps towards reducing
their energy consumption [2]. However, three core obstacles
currently prevent the direct comparison of state-of-the-art ap-
proaches, and as a result may be impeding progress within the
field. To the best of our knowledge, each contribution to date
has only been evaluated on a single data set and consequently
it is hard to assess whether such approaches generalise to
new households. Furthermore, many researchers sub-sample
data sets to select specific households, appliances and time
periods, making experimental results more difficult to repro-
duce. Second, newly proposed approaches are rarely compared
against the same benchmark algorithms, further increasing the
difficulty in empirical comparisons of performance between

different publications. Moreover, the lack of reference imple-
mentations of these state-of-the-art algorithms often leads to
the reimplementation of such approaches. Third, many papers
target different use cases for NILM and therefore the accuracy
of their proposed approaches are evaluated using a different set
of performance metrics. As a result the numerical performance
calculated by such metrics cannot be compared between any
two papers. These three obstacles have led to the proposal
of successive extensions to state-of-the-art algorithms, while a
comparison between such approaches remains impossible.

Against this background, we propose NILMTK1; an open
source toolkit designed specifically to enable easy access to
and comparative analysis of energy disaggregation algorithms
across diverse data sets. NILMTK provides a complete pipeline
from data sets to accuracy metrics, thereby lowering the entry
barrier for researchers to implement a new algorithm and
compare its performance against the current state of the art.
The contributions of NILMTK are summarised as follows:
• We propose NILMTK-DF (data format), the standard

energy disaggregation data structure used by our toolkit.
NILMTK-DF is modelled loosely on the REDD data set
format [5] to allow easy adoption within the community.
Furthermore, we provide parsers from six existing data
sets into our proposed NILMTK-DF format.

• We provide statistical and diagnostic functions which
provide a detailed understanding of each data set. We
also provide preprocessing functions for mitigating com-
mon challenges with NILM data sets.

• We provide implementations of two benchmark disag-
gregation algorithms: first an approach based on combi-
natorial optimisation [3], and second an approach based
on the factorial hidden Markov model [5], [4]. We
demonstrate the ease by which NILMTK allows the
comparison of these algorithms across a range of exist-
ing data sets, and present results of their performance.

• We present a suite of accuracy metrics which enables the
evaluation of any disaggregation algorithm compatible
with NILMTK. This allows disaggregation algorithms
to be evaluated for a range of use cases.

1Code: http://github.com/nilmtk/nilmtk (v0.1.0 was used for this paper.)

http://github.com/nilmtk/nilmtk
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Fig. 1: NILMTK pipeline. At each stage of the pipeline, results and data can be stored to or loaded from disk.

II. NILMTK
We designed NILMTK with two core use cases in mind.
First, it should enable the analysis of existing data sets and
algorithms. Second, it should provide a simple interface for
the addition of new data sets and algorithms. To do so, we
implemented NILMTK in Python due to the availability of a
vast set of libraries supporting both machine learning research
and the deployment of such research as web applications

Figure 1 presents the NILMTK pipeline from the import of
data sets to the evaluation of various disaggregation algorithms
over various metrics. We now discuss each module of the
pipeline in the remainder of this section.

A. Data Format
We propose NILMTK-DF; a common data set format inspired
by the REDD format [5], into which existing data sets can
be converted. NILMTK currently includes importers for the
following six data sets: REDD, Smart*, Pecan Street, iAWE,
AMPds and UK-DALE. After import, the data resides in
our NILMTK-DF in-memory data structure, which is used
throughout the NILMTK pipeline. At multiple stages in the
pipeline, data can be saved or loaded from disk in either CSV
or HDF5 format. In addition, NILMTK allows rich metadata
to be associated with a household, appliance or meter. For
example, NILMTK can store the parameters measured by
each meter (e.g. reactive power, real power), the mains wiring
defining the meter hierarchy (useful if a single appliance is
measured at the appliance, circuit and aggregate levels), etc.

B. Data Set Functions
NILMTK provides the following functions for data set diag-
nostics, statistics and preprocessing:

Detect gaps: Identifies pairs of consecutive samples where
the time between them is larger than a predefined threshold.

Dropout rate: The total number of recorded samples,
divided by the number of expected samples.

Dropout rate (ignoring gaps): Removes large gaps where
the sensor is off and calculates the dropout rate.

Up-time: The total time which a sensor was recording data.
Diagnose: Checks for all the issues listed above.
Proportion of energy sub-metered: Quantifies the propor-

tion of total energy measured by sub-metered channels.
Downsample: Down-samples data sets to a specified fre-

quency using aggregation functions such as mean and median.

Voltage normalisation: Normalises power demands to take
into account fluctuations in mains voltage.

Top-k appliances: Identifies the top-k energy consuming
appliances.

NILMTK also provides preprocessing functions for fixing
other common issues with these data sets, such as: (i) inter-
polating small periods of missing data when appliance sensors
did not report readings, (ii) filtering out implausible values
(such as readings where observed voltage is more than twice
the rated voltage) and (iii) filtering out appliance data when
mains data is missing. A detailed account of preprocessing and
statistics functions supported by NILMTK can be found in the
online documentation.2

C. Training and Disaggregation Algorithms
NILMTK provides implementations of two common bench-
mark disaggregation algorithms:

Combinatorial Optimisation: Finds the combination of ap-
pliance states which minimises the difference between the sum
of the predicted appliance power and the observed aggregate
power, subject to a set of appliance models [3]. However,
since each time slice is considered as a separate optimisation
problem, each time slice is assumed to be independent.

Factorial Hidden Markov Model: Models each appliance
using a hidden Markov model, and therefore this approach
models a household as a factorial hidden Markov model [5],
[4]. Since the operational states of each appliance are modelled
using a Markov chain, the dependence between time slices is
modelled by this approach.

For algorithms such as FHMMs, it is necessary to model the
relationships amongst consecutive samples. Thus, NILMTK
provides facilities for dividing data into continuous sets for
training and testing.

D. Appliance Model Import and Export
Many approaches require sub-metered power data to be col-
lected for training purposes from the same household in which
disaggregation is to be performed. However, such data is
costly and intrusive to collect, and therefore is unlikely to
be available in a large-scale deployment of a NILM system.
As a result, recent research has proposed training methods
which do not require sub-metered power data to be collected
from each household [4], [6]. To provide a clear interface

2Documentation: http://nilmtk.github.io/nilmtk/

http://nilmtk.github.io/nilmtk/
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Data set Number of
appliances

Percentage
energy

sub-metered

Dropout rate
(percent)

ignoring gaps

Mains up-time
per house

(days)

Percentage
up-time

REDD 9, 16, 23 58, 71, 89 0, 10, 16 4, 18, 19 8, 40, 79
Smart* 25 86 0 88 96

Pecan Street 13, 14, 22 75, 87, 150 0, 0, 0 7, 7, 7 100, 100, 100
AMPds 20 97 0 364 100
iAWE 10 48 8 47 93

UK-DALE 4, 12, 53 19, 48, 82 0, 7, 22 36, 102, 470 73, 84, 100

TABLE I: Summary of data set results calculated by the diagnos-
tic and statistical functions in NILMTK. Each cell contains the
minimum, median and maximum values across the set of houses.
AMPds, Smart* and iAWE each contain just a single house, hence
these rows have a single number per cell.

between training and disaggregation algorithms, NILMTK
provides a model module which encapsulates the results of the
training module required by the disaggregation module. Each
implementation of the module must provide import and export
functions to interface with a JSON file for persistent model
storage. NILMTK currently includes importers and exporters
for the described FHMM and CO approaches.

E. Accuracy Metrics
NILMTK provides the following set of metrics which com-
bines both general and energy disaggregation metrics:

1) Error in total energy assigned
2) Fraction of total energy assigned correctly
3) Normalised error in assigned power
4) RMS error in assigned power
5) Confusion matrix
6) True/False positives, True/False negatives
7) True/False positive rate
8) Precision, Recall
9) F-score

10) Hamming loss

III. EVALUATION

We now demonstrate several examples of the rich analyses
supported by NILMTK. First, we diagnose some common
(and inevitable) issues in a selection of data sets. Second, we
show various patterns of appliance usage. Finally, we present
summary performance results of the two benchmark algorithms
across six data sets using a number of accuracy metrics.

A. Data Set Diagnostics
Table I shows a selection of diagnostic and statistical functions
(defined in Section II-B) computed by NILMTK across six
public data sets. The table illustrates that AMPds used a
robust recording platform because it has a percentage up-
time of 100%, a dropout rate of zero and 97% of the energy
recorded by the mains channel was captured by the sub-meters.
Similarly, Pecan Street has an up-time of 100% and zero
dropout rate. However, two homes in the Pecan Street data
registered a proportion of energy sub-metered of over 100%.
This indicates that some overlap exists between the metered
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Fig. 2: Top 5 appliances in terms of the proportion of the total
energy used in a single house (house 1) in each of REDD (USA),
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Fig. 3: Daily appliance usage histograms of three appliances over
120 days from UK-DALE house 1.

channels, and as a result some appliances are metered by
multiple channels. This illustrates the importance of data set
metadata (proposed as part of NILMTK-DF in Section II-A)
describing the basic mains wiring.

B. Data Set Statistics
Figure 2 shows how the proportion of energy use per appliance
varies between countries. It can seen that the REDD and UK-
DALE households share some similarities in the breakdown of
household energy consumption. In contrast, the iAWE house
shows a vastly different energy breakdown, where the two air
conditioning units account for almost half of the household’s
energy consumption. Figure 3 shows histograms of usage
patterns for three appliances over an average day, showing
similarities between groups of appliances. The usage patterns
of the TV and Home theatre PC are similar because the Home
theatre PC is the only video source for the TV. In contrast, the
boiler’s usage pattern is due to household’s occupancy pattern
and hot water timer in mornings and evenings.

C. Disaggregation Across Data Sets
We now compare the disaggregation results across the first
house of six publicly available data sets. Since all the data sets
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Data NEP FTE F-score
set CO FHMM CO FHMM CO FHMM

REDD 1.61 1.35 0.77 0.83 0.31 0.31
Smart* 3.10 2.71 0.50 0.66 0.53 0.61

Pecan Street 0.68 0.75 0.99 0.87 0.77 0.77
AMPds 2.23 0.96 0.44 0.84 0.55 0.71
iAWE 0.91 0.91 0.89 0.89 0.73 0.73

UK-DALE 3.66 3.67 0.81 0.80 0.38 0.38

TABLE II: CO and FHMM performance across six data sets

were collected over different durations, we used the first half of
the samples for training and the remaining half for disaggrega-
tion across all data sets. Further, we preprocessed the REDD,
UK-DALE, Smart* and iAWE data sets to 1 minute frequency
using the down-sampling filter (Section II-B) to account for
different aggregate and mains data sampling frequencies and
compensating for intermittent lost data packets. The small gaps
in REDD, UK-DALE, SMART* and iAWE were interpolated,
while the time periods where either the mains data or appliance
data were missing were ignored. AMPds and the Pecan Street
data did not require any preprocessing.

Since both CO and FHMM have exponential computational
complexity in the number of appliances, we model only those
appliances whose total energy contribution was greater than
5%. Across all the data sets, the appliances which contribute
more than 5% of the aggregate include HVAC appliances such
as the air conditioner and electric heating, and appliances
which are used throughout the day such as the fridge. We
model all appliances using two states (on and off) across
our analyses, although it should be noted that any number of
states could be used. However, our experiments are intended
to demonstrate a fair comparison of the benchmark algorithms,
rather than a fully optimised version of either approach. We
compare the disaggregation performance of CO and FHMM
across the following three metrics defined in Section II-E:
(i) fraction of total energy assigned correctly (FTE), (ii)
normalised error in assigned power (NEP) and (iii) F-score.
These metrics were chosen because they have been used most
often in prior NILM work. Preferable performance is indicated
by a low NEP and a high FTE and F-score.

Table II summarises the results of the two algorithms across
the six data sets. It can be observed that FHMM performance
is superior to CO performance across the three metrics for
REDD, Smart* and AMPds. This confirms the theoretical
foundations proposed by Hart [3]; that CO is highly sensi-
tive to small variations in the aggregate load. The FHMM
approach overcomes these shortcomings by considering an
associated transition probability between the different states
of an appliance. However, it can be seen that CO performance
is similar to FHMM performance in iAWE, Pecan Street and
UK-DALE across all metrics. This is likely due to the fact that
very few appliances contribute more than 5% of the household
aggregate load in the selected households in these data sets. For
instance, space heating contributes very significantly (about
60% for a single air conditioner which has a power draw
of 2.7 kW in the Pecan Street house and about 35% across
two air conditioners having a power draw of 1.8 kW and
1.6 kW respectively in iAWE). As a result, these appliances

are easier to disaggregate by both algorithms, owing to their
relatively high power demand in comparison to appliances
such as electronics and lighting. In the UK-DALE house the
washing machine was one of the appliances contributing more
than 5% of the household aggregate load, which brought down
overall metrics across both approaches.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed NILMTK; the first open source
toolkit designed to allow empirical comparisons to be made
between energy disaggregation algorithms across multiple data
sets. The toolkit defines a common data format, NILMTK-DF,
and includes parsers from six publicly available data sets to
NILMTK-DF. The toolkit further facilitates the calculation of
data set statistics, diagnosing problems and mitigating them via
preprocessing functions. In addition, the toolkit includes imple-
mentations of two benchmark disaggregation algorithms based
on combinatorial optimisation and the factorial hidden Markov
model. Finally, NILMTK includes implementations of a set
of performance metrics which will enable future research to
directly compare disaggregation approaches through a common
set of accuracy measures. We demonstrated several analyses
facilitated by NILMTK including: use of statistics functions to
detect missing data, learning of appliance models from sub-
metered data and comparing disaggregation algorithms across
multiple data sets and accuracy metrics.

Future work will focus upon the addition of recently pro-
posed training and disaggregation algorithms and data sets.
For instance, larger data sets such as HES could also pro-
vide additional insight into disaggregation performance. In
addition, recently proposed algorithms which do not require
sub-metered power data for their unsupervised training could
be compared against the current supervised algorithms. An
additional direction for future work could be the use of a
semantic wiki to maintain a communal schema for appliance
metadata. Finally, the inclusion of a household simulator would
allow disaggregation algorithms to be evaluated in a wider
variety of settings than those represented by existing data sets.
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