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Abstract—Recent Non-Intrusive Load Monitoring (NILM)
approaches consider probabilistic graphical models and statistical
inference algorithms such as Hidden Markov Model (HMM).
One interesting HMM based approach towards unsupervised
energy disaggregation proposes prior models of general appliance
types which are tuned to specific instances using only aggregated
electrical consumption measurements. An essential step of this
approach is the subtraction of the estimated usage from the
aggregated load before the disaggregation of a new load. Then
wrongly-detected states of a given device lead to errors that are
disseminated by the subsequent disaggregation. In this paper
we aim at investigating an unsupervised HMM based approach
that overcomes this limitation. First, the general models are
tuned for a selection of suitable periods of the signal in analysis.
Second, the load disaggregation of each appliance is carried out.
Third, given the inferred consumption of the whole set of devices
and that the measured aggregated electrical usage is a linear
combination of these loads, an optimization step regarding the
adjustment of the calculated sources is performed. Although
experiments yielded in the REDD data set show the adequacy
of the approach, still further improvements are required.

I. INTRODUCTION

Nowadays, electrical energy disaggregation is a research
topic on its own. The emergence of smart grids and the
energy efficiency concerns have driven the renewed interest
on appliance-specific information and tools for perceiving
how and when electrical loads are used without recurring
to a swarm of individual meters, at least at the household
level. Non-Intrusive Load Monitoring (NILM) systems [1]
provide the appliance detailed information by acquiring
the whole-home electrical demand signal at a single point
(aggregated/mixed data) and breaking it up into the individual
appliance/circuit signals in the electrical network requiring
simple available hardware and complex software [1]. Currently,
NILM literature has been focused in probabilistic graphic
models able to represent the operation of appliances and in
statistical inference algorithms used for the disaggregation
of the whole-home electrical consumption. Hidden Markov
Model (HMM) and their variants are the uppermost explored
techniques [2], [3], [4], [5] mainly due to the assumption that
a device can be characterized by a finite set of states and
the search for unsupervised methods for disaggregation in
order to avoid prior sub-metering. In fact, prior measurements
of the individual consumptions may be required to model
appliances [2] or general priors can be defined for each group
of devices that are posteriorly adjusted [5].

This paper reports the exploration of an unsupervised
HMM based approach. For each group of devices, a finite set of
operation modes is defined based on the correspondent average
power consumption. Following the approach presented in [5],
the given general model is then adjusted for each appliance
instance in a given house considering the measured aggregated
signal. Additionally, at each instant of time, the sum of all
power demands must correspond to the measured aggregated
consumption. This requirement could be achieved by the
separation of the power demand of a given equipment from
the aggregated signal in analysis before the disaggregation of
a new device, as proposed in [5]. Nevertheless, the inferred
consumption of subsequent devices is negatively influenced
if a state is wrongly-detected for the previous devices. For
tackling this issue, the approach here presented considers
the standard HMM and the same observed sequence for
the load disaggregation for all the appliances. Additionally,
the approach comprises also an optimization step where the
power demand of each device is posteriorly adjusted.

The rest of this paper is organized as follows: next
section introduces the necessary background, the HMM and
appliance models, followed by describing the approach under
consideration in Section III. The experimental setup designed
is detailed in Section IV followed by the results, performance
assessment and correspondent discussion. Lastly, conclusions
and directions of future work are given.

II. MODELING APPLIANCES

When load measurements are gathered only at a
single point of an electrical network, the electrical energy
disaggregation corresponds to the inference of appliance-
detailed electrical consumption information over a period
of time. Formally, given the measurements of the total
electrical consumption, gathered during a period of time
T , x̄ = [x̄ (1) , x̄ (2) , . . . , x̄ (T )] , we seek for the loads
associated with the consumption of each device or circuit
i, i = 1, . . . , k, i.e. for the sequence of power demands
xi, i = 1, . . . , k, xi = [xi (1) , xi (2) , . . . , xi (T )] . Assuming
that the x̄ is a linear combination of the k loads xi then

x̄ (t) =

k∑
i=1

xi (t). (1)

Alternatively, given the whole-home power demand x̄, the
goal can be redefined as the uncovering of the states sequence



zi = [zi (1) , zi (2) , . . . , zi (T )] for each device i and where
zi (t) corresponds to the state observed in instant t, like ‘on’
or ‘off’. In fact, for each appliance, a finite set of states can be
defined corresponding to periods of operation for which the
difference between power demands within this interval of time
are approximately zero. For instance, for a refrigerator three
states can be defined: on, off and peak [5]. Then, a mapping
between xi = [xi (1) , xi (2) , . . . , xi (T )] and the sequence
of states zi = [zi (1) , zi (2) , . . . , zi (T )] exists. Furthermore,
as for the steady-state signatures, a change of state would
correspond to a change in the aggregated consumption
(observed sequence). Thereby, HMM is a suitable technique
to describe the power demands of each device [6].

HMM is a statistical tool based on Markov chains that
builds probabilistic models for sequences of observations of
length T , x̄ = [x̄ (1) , x̄ (2) , . . . , x̄ (T )] ∈ IRT . The HMM
consists of a discrete-time, discrete-state Markov chain with
hidden states z (t) ∈ {1, . . . , N}, where N is the number of
possible discrete values for states, together with an observation
model p (x̄ (t) | z (t)). In this extension of Markov chains the
observation is a probabilistic function of a state. The model
has a non-observable stochastic process that is ‘accessible’ via
another set of stochastic processes that produce the sequence
of observations [6].

A HMM of a given device i∗ is fully described
by: (i) the initial probabilities associated with each
state, πj = p (z (1) = j); (ii) the transition matrix A
comprising the transition probabilities between states
j and w, ajw ≡ p (z (t) = w | z (t− 1) = j) such
that ajw ≥ 0 and

∑N
j=0 ajw = 1; (iii) the emission

probability considering continuous observations x̄ such that
p (x̄ (t) | z (t) = j, φ) = N

(
µj ,
∑

j

)
where µj and

∑
j are

the mean and variance of the Gaussian distribution describing
the power demand of appliance i at state j. In short, a HMM
for an appliance i is expressed by θi = {πi, Ai, φi}.

Solving the energy disaggregation problem via HMM
involves then the training of θi. For this exploratory work,
generic models of appliances as proposed in [5] are used:
general models of the different device types are defined,
which are then tuned for the specific appliances in each house,
using only aggregate power consumption of that household.
The generic models consist of prior information for each
parameter in θi. These priors, a generalization of a vast
number of instances of the same appliance, are then adjusted
for each instance in study for a given home. This adjustment
phase considers the aggregated consumption of the house
and searches for periods where only a single appliance is
most likely is being turn on and off. Towards this end, the
parameters in θi are tuned by Expectation-Maximization (EM)
algorithm, performed for several overlapped time-windows for
the aggregated time series. For each time window, the EM is
initialized with the prior information for the given appliance
and the achieved likelihood for the current time-window, L,
is used to determine if it is a suitable period for training the
appliance instance. A time-window is said suitable for that
purpose if L > D holds, where D is the appliance specific
threshold. The following step only considers the previously
selected time-windows to tune the prior models θi via the EM

∗For the sake of readability the index i is omitted when obviously implied.

algorithm, resulting in the θ̂i model for the device i. In this
work we employed the standard HMM while the approach
proposed in [5] studies the difference HMM, where a second
observation sequence, derived from the first one, exists.

III. ELECTRICAL ENERGY DISAGGREGATION VIA
VITERBI AND SOURCE OPTIMIZATION

Given the tuned models θ̂i and the whole-home electrical
consumption, the following stage is the disaggregation of elec-
tricity usage. In this work we investigate a three step approach:
i) tune the general priors θi via EM for each i = 1, . . . , k, as
described in the previous section; ii) consumption inference for
each device i and iii) optimization of the inferred loads. At the
second phase the most probable sequence of states for the ap-
pliance i is calculated for a given sequence of aggregated usage
samples and consequently, the inferred consumption of device
i, si, is obtained, considering also the tuned model θ̂i. Repeat-
ing the process for each device does not ensure that Equation 1
holds. Alternatively to the process proposed in [5] where the
inferred usage of each device would be subtracted from the
aggregate consumption previously to the state inference of a
new appliance, we propose a posterior optimization that takes
in consideration the requirement associated with Equation 1.
With this approach we seek to overcome the limitations found
in the ‘subtract’ approach for which the calculation of usage
associated with subsequence appliances would disseminate the
errors of wrongly-detected states for the current device.

The second step of this approach consists on the
calculation of the most probable sequence of states z̃i,
for each instant of time t = 1, . . . , T , for each device
i = 1, . . . , k given the observed sequence of whole-
home consumptions x̄, i.e., for each i we must compute:
z̃i = argmaxz(1:T ) p (z (1 : T ) | x̄ (1 : T )) . Within the HMM
context this sequence is achieved via Viterbi algorithm which
considers the previously tuned model θ̂i and x̄ to determinate
the probability of the possible states for each t. Then, the
inferred electrical usage associated with appliance i, si, is
computed considering the sequence z̃i and the mean power
for each state provided by θ̂i.

Given then the inferred consumption for every device
in study as a result of the Viterbi algorithm, the following
stage (third step) considers that at each instant of time,
the aggregated consumption is the linear mixture of the k
consumptions of the appliances and where the si represents
an initial approximation to the usage of appliance i. Thereby
we add weights mi ∈ IRT

+ to tune si, i = 1, . . . k which must
be calculated such that

x̄ =

k∑
i=1

si ⊗mi (2)

holds (where ⊗ stands for the elementwise multiplication).
Alternatively, considering the sparse matrix A ∈ IRT×kT

+ with
lines at = [0, . . . , 0︸ ︷︷ ︸

(t − 1) k

, s1 (t) , s2 (t) , . . . , sk (t) , 0, . . . , 0]︸ ︷︷ ︸
(T − t) k

,and

the vector w ∈ IRkT
+ ,

w = [m1 (1) , . . . ,mk (1) ,m1 (2) , . . . ,mk (2) , . . .

. . . ,m1 (T ) , . . . ,mk (T )]
T
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Fig. 1. Illustration of the proposed approach.

then the Equation 2 can be re-written as

x̄ = Sw. (3)

Additionally, assuming that si is a good approximation
to the actual consumption of the device i, the tuned load
x̃i = si ⊗mi should not differ significantly from si. Hence,
it must be ensured that

k∑
i=1

‖x̃i − si‖22 ≡
k∑

i=1

‖si ⊗ (mi − 1)‖22 (4)

is minimum i.e. mi should be as close as possible to the unit
vector. Thus, the third step of the disaggregation approach
consists of the following optimization problem:

min

k∑
i=1

‖si ⊗ (mi − 1)‖22

subject to x̄ = Sw

Stj ≥ 0, ∀t = 1, . . . , T, ∀j = 1, . . . , kT

wj ≥ 0, ∀j = 1, . . . , kT.

The overall approach schema is presented in Figure 1. Note
that the optimization step allows for the calculation of the
power consumption variations, which were “smoothed” by the
definition of a finite set of states characterized by mean power
consumption as required by the HMM. Thereby, a more
accurate computation of consumption associated with the
several appliances, in particular for appliances with continuous
variable loads, is possible. This particularity distinguishes the
proposed approach from the Factorial Hidden Markov Model,
composed by several parallel and independent HMMs.

IV. PRELIMINARY COMPUTATIONAL EXPERIMENTS

The freely-available Reference Energy Disaggregation
Dataset (REDD) comprises whole-home and circuit/device
specific electricity consumption for six real houses over several
months. For each monitored house, the whole-home electricity
signal and individual circuits in the home, each labeled with
its category of appliance, were recorded [7]. The prior models
were defined considering the whole dataset, yet for assessing
the proposed approach, only the data associated to House 1 was
used. A preprocessing phase selected only the common periods
of sampling for both aggregated and individual signals. They
were then downsampled using a median filter such that each

sample became spaced 1 minute apart. Based on the percentage
that each group represents in the total electricity consumed,
the five ones presenting higher impact were selected. The sixth
one contains the remaining power. The signals were subjected
to a normalization step assuring that the relative importance
of each group in the aggregated signal was maintained.
The elements of each signal (aggregated and device ones)
were normalised regarding the norm of the aggregated
signal. In short, we focused on Refrigerator, Dishwasher,
Kitchen Outlets, Lighting, Washer Dryer and Others. The
post-processed data comprises 23 daily signals, which 16 were
used for tuning the prior appliance models and the remaining
was only used at the disaggregation step. The setup is similar
to previous works allowing us to perform further comparisons.

The review of the NILM related literature reveals that a
variety of performance indicators are employed and usually
selected in accordance with the designed solution. In this
exploratory work, the performance was measured in terms
of the root-mean-square errors (RMSE), a measure between
the inferred values and the truly observed amount. The
RMSE was computed concerning both (i) an overview of
the error and (ii) a detailed error assessment by appliance.
For the former analysis, the RMSE associated with the
aggregated signal x̄ and its predicted version ˜̄x =

∑k
i=1 x̃i,

RMSE(x̄, ˜̄x) =

√∑T
t=1 (x̄−˜̄x)

2

T , was computed. For the
latter, the RMSE corresponding to each device i between
the measured consumption xi and its predicted version
x̃i, i = 1, . . . , k, was also calculated using the above Equation
with the appropriated adjustments.

In this computational experiment we explore the suitability
of the proposed approach, the third step in particular. Figure 2
reports the average of the RMSE values for 5 runs, calculated
in accordance with the above description. Namely the RMSE
values computed concerning the inferred loads without the
optimization step (denoted as ‘RMSE after Viterbi’) and the
RMSE values calculated regarding the adjusted loads after
the optimization step (denoted as ‘RMSE after optimization’).
The leftmost columns report the RMSE associated with the
aggregated signal while the remaining report the RMSE
values by appliance.

A notorious decrease on the RMSE value correspondent
to the aggregated signal occurred. Indeed, considering the
inferred aggregated consumption as the sum of the inferred
loads without the optimization step, the RMSE is above 0.018
while this error was virtually null for the aggregated signal
calculated after the adjustment resultant from the optimization
(1.14×10−13±5.09×10−14). Note that the built formulation
ensures the equality between the loads of appliances and the
total measured electricity (see Equation 3) thereby a low error
value was expected. A more detailed analysis is provided by
the RMSE associated with each group in study. Once again,
a prominent decreased between the inferred consumption after
the disaggregation via the Viterbi algorithm and the ‘tuned’
usage demands by the optimization step is observed for all the
devices in analysis. Moreover, the decrement in the error was,
with exception of the group ‘Others’, always superior to 50%.
The error reduction is specially prominent for the ‘Lighting’
and ‘Washer Dryer’ whose RMSE corresponds to only 21%
and 25%, respectively, of the error calculated for the loads
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Fig. 2. RMSE values considering the assigned aggregated consumption and the power usage of each appliance in study.

based only on the Viterbi outcome. Regarding the magnitude
of the errors, we observed that the post-optimization RMSE
associated with both the aggregated signal and the several
devices in analysis has a similar magnitude to the obtained
results for other techniques as presented in [8] showing the
effectiveness of the optimization step. On the other hand, the
pre-optimization error (RMSE after Viterbi) is substantially
higher than RMSE values calculated for the optimized loads.
Additionally, the performed empirical analysis revealed the
need of further improvement of the computed loads based
on the Viterbi algorithm outcome, namely concerning the
appliance modeling and the observation sequence used. Note
that the outcome of the Viterbi algorithm is crucial for the
optimization step: the function being minimized is based on
the distance between the ‘tuned’ loads and the inferred usage
based on the decoding process (see Equation 4). That is, the
approach assumes that the outcome of the second step is a
relative good approximation to the actual consumption of each
device. Nevertheless, the achieved results lead to the conclu-
sion that this assumption is not verified which implies further
improvements to the approach are of upmost importance.

V. CONCLUSION AND FUTURE WORK

The relevance and pertinence of research on Non-intrusive
Load Monitoring (NILM) is undeniable. Currently several re-
searchers pursue unsupervised techniques in order to avoid the
requirement of prior individual measurements of appliances’
consumption. For this purpose, NILM studies are, at the mo-
ment, focused on probabilistic graphic models, namely HMM.

Inspired by the generic models of different appliance types
proposed in the related literature, this exploratory work studies
an unsupervised HMM based approach. For a given house,
these general models are adjusted for the particular instance of
the appliances there used, requiring only measurements of the
aggregated electrical consumption of the house. Next, the load
disaggregation occurs taking in consideration the previously
tuned appliance models. Still the Viterbi algorithm per si, used
to calculated the most probable sequence of states for a given
appliance, does not take into consideration that the observation
sequence of the aggregated signal is an linear combination
of the appliance loads. For that purpose, the approach could
‘subtract’ the computed power usage of a given appliance
from the aggregated time-series previous to the adjustment and

disaggregation of a new device. Yet errors would be dissem-
inated by the subsequent power disaggregation. Alternatively,
this exploratory work proposes a posterior optimization step
to tune the computed electrical usage associated with each
appliance, ensuring that the linear combination of these loads
corresponds to the measured aggregated signal. Experiments
used the REDD dataset and demonstrated the feasibility of
the approach. Still further improvements are required, namely
in terms of appliance modeling via HMM. In fact, the loads
computed according to the most probable sequence of states
are the base of the optimization step, thereby the appliance
modeling via HMM must be as accurate as possible. Further
improvements and on-going work consider, for instance, the
so-called delta coefficients, widely used in speech recognition,
and the use of an observation sequence derived from the sub-
traction of a baseline power draw from the aggregated signal.
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