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Abstract—Nonintrusive load monitoring (NILM) is a process
of discerning what appliances are running within a house from
processing the power or current signal of a smart meter. Since
appliance states are not observed directly, hidden Markov models
(HMM) are a natural choice for modelling NILM appliances.
However, because the number of HMM states grows rapidly
with the number of appliances and their internal states, existing
methods have relied on either simplifying the model (e.g. fac-
torial HMM) or reducing the number of appliance states (e.g.
considering only on/off states), all of which reduces the accuracy
of NILM. In this paper we present a new NILM algorithm that
can handle multiple internal appliance states while still keeping
complexity in check by utilizing the sparsity of HMM emission
and transition matrices. The results show overall accuracy results
of 95% for both classification and estimation using the AMPds
dataset.

Index Terms—Load disaggregation, sparse matrix, super-state
HMM, Viterbi algorithm

I. INTRODUCTION

Nonintrusive load monitoring (NILM) is the process of
discerning what appliances are running in a house from
analyzing the power or current signal of the whole-house
smart meter. NILM algorithms could be used to inform the
occupants about what appliances are running within the home,
and how much power these appliances consume, without the
need of purchasing additional power monitoring sensors. With
this information the occupants can make informed decisions
about conserving power, whether motivated economically or
ecologically (or both).

Since individual appliance internal states are not directly
observed in the total power or current reading, hidden Markov
models (HMM) have been a natural choice for modelling in
NILM [1], [2]. Although there are a number of algorithms for
HMM decoding, such as the Viterbi algorithm [3], the main
practical obstacle to NILM is the complexity involved in state
processing and enumeration (e.g. total states = KM , where
each of M appliances has K states). This exponential size of
the state space has been a practical limitation to the wider
application of NILM.

To curtail exponential complexity, Kolter [1] and Par-
sons [2], among others, have use factorial HMMs [4]. Each
appliance is a separate multi-state Markov chain which closely
reflects the different operational states of that appliance. For
purposes of discussion, we define binary appliances (simple
ON/OFF) as a subset of multi-state appliances.

On the other hand, Zeifman [5] proposed the Viterbi al-
gorithm with sparse transitions (VAST), a modified version

of the Viterbi algorithm, with multiple transition matrices
(each a triple of appliances), which only disaggregated binary
appliances (ON or OFF). Such an approach required him to
approximate a multi-state appliance (e.g., the dishwasher) to
be a binary appliance [6]. The majority of modern appliances
are not binary, which severely limited what appliances VAST
could disaggregate. It is worth noting that the 3-appliance
transition matrices can still have zero-probability elements and
that the sparsity in the emission matrix was not dealt with. One
of the biggest disadvantages, when using multiple matrices, is
loss of information on appliance dependence. For example,
consider the condition that when a heat pump turns ON, the
HVAC fan (on a separate breaker) increases its rotation speed,
and then does the reverse when the heat pump turns OFF (as
we have observed in our dataset [7]).

Our main contribution is an HMM-based disaggregation al-
gorithm that deals with matrix sparsity in a much simpler way
than Zeifman while preserving load dependency information
that would have been lost by using multiple transition matrices.
Our present work introduces the use of one HMM (with
one transition and emissions matrix) where the super-state of
this HMM could be considered the house state (Section II).
Further, we introduce the sparse Viterbi algorithm for NILM,
which offers an alternative, more accurate, solution exploiting
matrix sparsity as compared to the earlier work of Zeifman
(Section III). Our approach can handle multi-state appliances
while keeping complexity in check, by making use of the
observed sparsity in both emission and transition matrices of
the HMM. This leads to higher accuracy compared to existing
NILM algorithms. We show that the accuracy for our NILM
algorithm scores well (Section IV).

II. HMM FOR NILM

We model a house with M appliances as an HMM λ =
{P0,A,B} having a row-vector of initial prior probabilities
P0 of length K, a K ×K transition matrix A, and a K ×N
emission matrix B, where K is the number of whole-house
states (or super-states), and N is the number of possible
observations. If t − 1 and t represent the previous and the
current time instants, the entries of A and B are defined as
A[i, j] = p(St = j|St−1 = i), B[j, n] = p(yt = n|St = j);
where St is the super-state and yt is the observation, both at
time t.

The super-state is composed of the states of all M appli-
ances: St = (X

(1)
t , X

(2)
t , ..., X

(M)
t ), where random variable
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X
(m)
t is the internal state of the m-th appliance at time t. For

example, a dishwasher may have 4 internal states that consist
of {OFF, WASH, RINSE, DRY}. The total number of super-
states is K =

∏M
m=1K

(m) where K(m) is the number of
internal states of the m-th appliance.

As the state of an appliance changes so too does its power
or current draw (instantaneous readings). Let y(·) be the
current draw of the corresponding internal appliance state,
so that y

(
x
(m)
t

)
is the current draw of the m-th appliance

in state x
(m)
t . For notational convenience, we assume that

the current values are non-negative integers, i.e., y
(
x
(m)
t

)
∈

{0, 1, ..., N}; in practise, these would not necessarily be inte-
gers, but would still be constrained to a discrete set of possible
readings of the current meter. The observed measurement at
time t from the smart meter is the sum of the current draws
of individual appliances: yt =

∑M
m=1 y

(
x
(m)
t

)
.

A. State Quantization

Model parameters, such as appliance state probabilities
p(X

(m)
t = x

(m)
t ) as well as conditional probabilities in A

and B, can be obtained from existing NILM datasets (e.g.
AMPds [7]). In general, even though the assumed full set
of possible current draws is {0, 1, ..., N}, all appliances have
fewer than N states. To model this, for the m-th appliance,
we quantize the set {0, 1, ..., N} into K(m) bins such that
the first bin contains 0 (and corresponds to the OFF state),
while other bins are centred around the peaks of the em-
pirical probability mass function (PMF) of the current draw
pYm

(n) = p
(
y
(
X

(m)
t

)
= n

)
, n ∈ {0, 1, ..., N}, obtained

from the dataset. A peak in the PMF is identified when the
slope on the left, pYm(n)−pYm(n−1), is positive, the slope on
the right, pYm(n+1)− pYm(n), is negative, and pYm(n) > ε,
where ε = 0.00021 used to ensure that small peaks (noise) are
not quantized as states.

A simple example of such quantization is given in Table I,
where N = 6, but only two states are identified after
quantization, hence K(m) = 2. These states are indexed by
k(m) ∈ {0, 1} and are centred around the values n = 0

and n = 3. The quantized states are denoted X̂
(m)
t . The

current draws of the quantized states are stored as a K(m)-
dimensional vector, denoted y

(m)
peak, whose elements are the

locations of the peaks in the original PMF. For the example
in Table I, y(m)

peak[0] = 0 and y
(m)
peak[1] = 3. The probability

of a given quantized state is simply the sum of probabil-
ity masses in the corresponding bin, hence for the above
example, p

(
y
(
X̂

(m)
t

)
= 0
)

= p(k(m) = 0) = 0.45 and

p
(
y
(
X̂

(m)
t

)
= 3
)
= p(k(m) = 1) = 0.55. Since K(m) ≤ N ,

it can be seen that state quantization will increase the sparsity
of A and B.

The super-state corresponding to quantized internal states is
Ŝt = (X̂

(1)
t , X̂

(2)
t , ..., X̂

(M)
t ). The quantized super-states can

be indexed linearly in terms of the indices of the quantized

TABLE I
AN EXAMPLE OF PMF AND STATE QUANTIZATION

n 0 1 2 3 4 5

count(n) 900 80 100 620 200 100

pYm (n) 0.45 0.04 0.05 0.31 0.10 0.05

y
(m)
peak 0 3

k(m) 0 1

p(k(m)) 0.45 0.55

internal states k(1), k(2), ..., k(M) as follows:

k = k(M) +

M−1∑
m=1

(
k(m) ·

M∏
i=m+1

K(i)

)
. (1)

Based on (1), one can also extract individual appliance state
indices k(m) from k by iteratively extracting the remainder
of division of k by partial products

∏m
i=1K

(i), starting with
k(M).

B. Exponentially Large but Sparse Matrices

As the number of appliances to disaggregate increases, the
number of super-states K grows exponentially, and so too do
the dimensions of A and B. However, in the case of NILM
these matrices are very sparse. In fact, so sparse that using
a HMM with full super-state space is a practical option. The
theoretical sparsity of B is clear from its definition. Since for
each specific super-state st = (x

(1)
t , x

(2)
t , ..., x

(M)
t ) there is

exactly one output yt = y
(
x
(1)
t

)
+y
(
x
(2)
t

)
+ · · ·+y

(
x
(M)
t

)
,

each row of B should contain exactly one non-zero element
(and that element is equal to 1). However, with quantization,
this might not hold exactly, as the current draw may fluctuate
slightly within a quantized state even if the super-state does not
change. Therefore, we may observe several non-zero values in
a given row of B, which of course should still sum up to 1.
So the best-case sparsity of B, defined as the fraction of zero
entries, can be calculated as 1− K

K·N = 1− 1
N .

The sparsity in A refers to the fact that there are relatively
few possible transitions from any given super-state. While this
is not as obvious as in the case of B, it can be appreciated by
realizing that multi-state appliances usually operate in cycles
that determine the sequence of their states. For example, a
possible state sequence for a dishwasher could be OFF →
WASH → RINSE → DRY → OFF. Meanwhile, DRY →
WASH → OFF would not make much sense.

To give a real-world example, we examined one year’s worth
of appliance data in the AMPds dataset [7] and found that
A was 43.2% sparse while B was 97.3% sparse, when using
two appliances, clothes dryer (CDE) and kitchen fridge (FGE),
each having 3 quantized internal states (32 = 9 super-states).
The house had a 200A service, so N = 200. In this scenario,
the best-case sparsity for B would be 1− 1

200 or 99.5%.
Sparsity of A and B can be used to simplify computations

involved in Viterbi-based state decoding, as will be described
in the next section. In addition, storage requirements can be
significantly reduced. To this end, we employ the Harwell-
Boeing sparse matrix format [8] (Algorithm 1) to store A
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Accepted at the NILM Workshop 2014 in Austin Texas, USA. Page 3

and B in compressed form. For 11 appliances with 34,560
super-states, uncompressed A requires about 9.6 GB, while
compressed A requires only 93.8 kB. We also define a function
to returning a list of tuples of all non-zero probability elements
(see Algorithm 2) which will be used for optimizing the Viterbi
algorithm in Section III. It is worth noting that we have
found relatively identical results occurred when examining the
sparsity of the REDD dataset [9].

Algorithm 1 COMPRESS(M)

1: val, row idx← []
2: col ptr ← [1]
3: for col = 1→M[0].length() do
4: for row = 1→M.length() do
5: if M[row, col] 6= 0.0 then
6: val.append(M[row, col])
7: row idx.append(row)
8: end if
9: end for

10: col ptr.append(row idx.length() + 1)
11: end for
12: return (val, row idx, col ptr)

Algorithm 2 COLUMN-VECTOR(M, col)

1: v ← []
2: for i = M.col ptr[col]→M.col ptr[col + 1]− 1 do
3: v.append((M.row idx[i],M.val[i]))
4: end for
5: return v

Algorithm 3 SPARSE-VITERBI(K,P0,A,B, yt−1, yt)

1: Pt−1[k],Pt[k]← 0.0, k = 1, 2, ...,K
2: for (j, pb) ∈ COLUMN-VECTOR(B, yt−1) do
3: Pt−1[j]← P0[j] · pb
4: end for
5: for (j, pb) ∈ COLUMN-VECTOR(B, yt) do
6: (i, pa)[]← COLUMN-VECTOR(A, j)
7: Pt[j]← max(i,pa)(Pt−1[i] · pa · pb)
8: end for
9: return argmax(Pt)

III. SPARSE VITERBI ALGORITHM

The standard Viterbi algorithm is well suited for largely
populated matrices. However, when used with sparse matrices,
there is an extensive amount of naive probability calcula-
tions involving zero-probability terms. Harwell-Boeing matrix
compression not only reduces the amount of storage, but it
also allows us to avoid calculating zero-probability terms.
Taking advantage of matrix sparsity to avoid unnecessary
calculations forms the basis of our algorithm called sparse
Viterbi algorithm (see Algorithm 3), which is based on a
greedy version of the Viterbi algorithm [10, pp. 352].

Let yt−1 and yt be the total current measurements at times
t−1 and t. The goal is to infer the quantized super-state ŝt (or,
equivalently, its index kt), from which we will determine the

quantized internal states. This will be achieved by decoding
the internal states’ index from the super-state index using (1).
These posterior probabilities are stored in vector Pt−1 as part
of initialization (Algorithm 3, lines 1–4), directly from [10]

Pt−1[j] = P0[j] ·B[j, yt−1], j = 1, 2, ...,K. (2)

The computation is reduced by only considering non-zero
elements of B[j, yt−1] in (2), to be clarified below. We now
calculate the posterior probabilities for the current time period
(the recursion step, Algorithm 3, lines 5–8)

Pt[j] =
K

max
i=1

(Pt−1[i] ·A[i, j] ·B[j, yt]), j = 1, 2, ...,K. (3)

We terminate (Algorithm 3, line 9) to find the most likely
current super-state index kt = argmax(Pt). This algorithm
is called each time we need to disaggregate a reading, using a
sliding window of observations. For example, we disaggregate
t = {1, 2}, then t = {2, 3}, t = {3, 4}, and so on.
Disaggregation only begins when the first 2 observations
are received from the meter. For our purposes, we are not
interested in the prediction of the super-state from t − 1
(the backtracking step). Once the kt is determined feedback
is sent to the occupant – this makes it final, no turning
back time. Again, zero-probability terms are avoided in the
calculation. The zero-probability terms are effectively ignored
due to the Harwell-Boeing matrix compression method, which
only stores non-zero elements of the corresponding matrices.
A call to the function COLUMN-VECTOR() (Algorithm 3, lines
2, 5, and 6) only returns non-zero elements, which removes
zero probability terms from the calculations.

IV. EXPERIMENTS

To show the benefits of taking advantage of sparsity, we
used the AMPds dataset [7], which contains 1 year’s worth
of appliance data (524,544 readings at 1 minute intervals).
Our tests showed that with 2 appliances, each having 3
states (9 super-states), for every 1 section of code execution
(Algorithm 3, line 7) of sparse Viterbi, the conventional Viterbi
algorithm would, on average, execute the same section 72.7
times. Figure 1 shows the time taken to disaggregate all
524,544 readings from 2 to 11 appliances (AMPds data) by
conventional and sparse Viterbi algorithms. The savings are
considerable, especially for more than 4 appliances (135 super-
states). For example, for 2 appliances, the execution time was
reduced from 16.8 seconds to 11.4 seconds (32% faster) and
for 11 appliances (34,560 super-states) the execution time was
94 minutes. Tests were done on a MacBook Pro machine with
a 2.6 GHz Intel Core i5 processor.

We test our NILM algorithm with data from the AMPds [7]
dataset (524,544 readings or events, our algorithm runs on-
line so each reading is an event). We use the instantaneous
current measurement (I) at dA precision (1,572,864 super-
states) because it fluctuates less than power [7]. However,
our algorithm is agnostic of measurement type and we could
have used real or apparent power. To mitigate bias we used
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Fig. 1. Runtime (in minutes) comparison of conventional and sparse Viterbi
algorithms when disaggregating 524,544 readings.

10-fold cross-validation. We ran 2 tests: denoised and noised.
For denoised, the whole-house current draw measurement was
denoised so that it equalled the summation of the current draw
from the 11 appliances chosen for disaggregation. For noised,
the whole-house current draw measurement was not modified.
The results are listed in Table II where results are reported
as “denoised% / noised%”. For example, “94.5 / 91.4” would
read 94.5% on the denoised test and 91.4% on the noised
test. The ON column is the load’s % time ON. The Events
column shows the number of state changes. Results show a
very high degree of accuracy for most appliances in both tests.
The Basement, Washer, Dishwasher, and Fridge loads scored
low due to having states that operate with the same current
draw. For our noised test, 40.9% of the total aggregate data
was noise (i.e. from other loads, not the 11 loads in Table II).

TABLE II
ACCURACY TESTING RESULTS (DENOISED/NOISED)

Load FS f-score Estimation ON Events
Basement 53.6 / 40.2 99.0 / 69.3 23.0 6404
Dryer 99.7 / 99.6 90.8 / 92.2 100.0 1826
Washer 21.5 / 3.2 60.2 / 57.4 2.6 9961
Dishwasher 60.8 / 14.3 86.3 / 85.9 2.7 4394
Fridge 76.2 / 49.2 99.4 / 99.2 45.1 43500
HVAC/Fan 97.9 / 96.2 99.7 / 98.8 100.0 2531
Garage 99.9 / 99.9 99.8 / 99.9 100.0 228
Heat Pump 98.1 / 97.0 99.1 / 88.8 100.0 8291
Home Office 95.8 / 96.0 88.1 / 82.1 100.0 11044
Ent/TV 88.9 / 85.0 98.6 / 91.5 100.0 13314
Wall Oven 99.8 / 99.6 84.0 / 85.0 100.0 396
Overall 94.5 / 91.4 97.4 / 96.8 100.0 101889

A. Accuracy Measuring Methods

Table II has 2 accuracy measuring methods: Estimation
and FS f-score. The estimation measure is based on Kolter
and Johnson [9]. FS f-score or finite-state f-score [11] is our
classification measure (inspired by [12], itp and atp). We
wanted a way to measure non-binary classifications. As f-
score is relevant for binary appliances (OFF/ON), it is not
for multi-state appliances. We split tp (true-positives) into
two: itp (inaccurate true-positives) and atp (accurate true-
positives). The use of itp allows us to partially penalize a

misclassification that is not binary in nature. To calculate itp
we use the equation

itp =
|x̂(m)

t − x(m)
t |

K(m)
, (4)

where x̂(m)
t is the estimated state from appliance m at time t,

x
(m)
t is the ground truth state, and K(m) is the number of states

for appliance m. To determine the atp we use the equation
atp = 1− itp.

V. CONCLUSIONS

We presented a sparse Viterbi algorithm that can disag-
gregate with a high degree of overall accuracy (95% for
both classification and estimation) using the AMPds dataset.
The practicality of using a super-state HMM is enabled
by exploiting sparsity in transition and emissions matrices
and preserving the conditional probability between separate
appliances.
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