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Abstract—
In this paper we propose an approach by which
the energy efficiency of individual appliances can be
estimated from an aggregate load. To date, energy
disaggregation research has presented results for small
data sets of 7 households or less, and as a result the
generality of results are often unknown. In contrast,
we have deployed household electricity sensors to 117
households and evaluated the accuracy by which our
approach can identify the energy efficiency of refriger-
ators and freezers from an aggregate load. Crucially,
our approach does not require training data to be
collected by sub-metering individual appliances, nor
does it assume any knowledge of the appliances present
in the household. Instead, our approach uses prior
models of general appliance types that are used to first
identify which households contain either a combined
fridge-freezer or separate refrigerator and freezer, and
subsequently to estimate the energy efficiency of such
appliances. Finally, we calculate the time until the
energy savings of replacing such appliances have offset
the cost of the replacement appliance, which we show
can be as low as 2.5 years.

1. INTRODUCTION

Non-intrusive appliance load monitoring (NIALM), or energy
disaggregation, aims to break down a household’s aggregate
electricity consumption into individual appliances [1]. The
motivation for such technology is to be able to inform a
household’s occupants of how much energy each appliance
consumes and furthermore offer actionable energy saving
advice to empower them to reduce their consumption [2].
To realise this application through a practical and widely
applicable software system, it is essential to take advantage
of existing infrastructure rather than designing new hardware.
Smart meters are currently being deployed on national scales
[3] and will report household aggregate power at 10 second
intervals, and are therefore an ideal data collection platform
for NIALM.

Recent contributions to the field of NIALM have applied
principled machine learning techniques to the problem of
energy disaggregation. However, all approaches applicable to
10 second smart meter data have only been applied to data sets
of 7 households or less, and furthermore such test households
often contain an unrealistically small number of appliances. As
a result, it is not known whether such approaches are either

over-fitted to the test households or are sufficiently general to
be applied at larger scales. For example, Kolter & Johnson pro-
posed an approach based on the factorial hidden Markov model
(FHMM), however it was only tested in 5 households [4].
Kim et al. proposed an unsupervised approach also based on
FHMMs, which was only tested in 7 households, each of
which contained a maximum of 10 appliances [5]. Parson et
al. proposed an approach which incorporates prior knowledge
into HMM-based disaggregation, but was only tested on 4
households [6]. Most recently, Johnson & Willsky proposed
an approach based on the factorial hidden semi-Markov model
(FHSMM), yet it was only tested in 4 households, each of
which contained a maximum of 5 appliances [7]. Clearly,
there exists a challenge to evaluate NIALM approaches in
larger numbers of households before conclusions can be drawn
regarding their generality and scalability.

In this paper, we address the challenge of evaluating the
scalability and generality of energy disaggregation, and to do
so, we present a deployment of an extension of our previously
proposed approach [6] to 117 real UK households. In each
household, we install an electricity sensor which reports the
household aggregate power demand at 10 second intervals,
matching the data that will be reported by UK smart meters [3].
We then show how our approach is able to estimate the energy
efficiency of the refrigerators and freezers in these households
without requiring sub-metered appliance data to be collected
or information to be collected regarding the appliances present
in the household. Crucially, this requires our approach to
first determine which households contain either a combined
fridge-freezer or a separate refrigerator and freezer. Next, our
approach identifies durations when only the refrigerator and
freezer are operating (typically during overnight periods), from
which it learns a model of the appliances’ behaviour. From this
model, the energy efficiency of the refrigerator and freezer are
calculated and compared to an energy efficient replacement.
We show that our approach is able to correctly detect 86%
of households which contain a combined fridge-freezer, while
producing less than 20% false positives. We then demonstrate
that our approach is able to estimate the energy efficiency of
such fridge-freezers with an average error of 11%. Next, we
show that this information can be used to calculate the time
until the energy savings due to replacing the appliance have
offset the cost of the new appliance, which can be as low as
2.5 years. We also provide similar results for households with
separate refrigerators and freezers.
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2. PROBLEM DESCRIPTION

The aim of appliance energy efficiency estimation is as follows.
Given a discrete sequence of observed aggregate power read-
ings, ȳ = ȳ1, . . . , ȳT , determine an appliance’s annual energy
consumption, E(n), where n is one of N appliances. In the
field of energy disaggregation, this often involves modelling
the power demand, y(n) = y

(n)
1 , . . . , y

(n)
T , and operating state,

x(n) = x
(n)
1 , . . . , x

(n)
T , of appliance n in time slice t.

3. DEPLOYMENT OF HOUSEHOLD ELECTRICITY SENSORS

We deployed household electricity sensors to 117 households
in the village of Colden Common, Hampshire, UK. We at-
tached an AlertMe (www.alertme.com) current transformer
clamp to the household electricity input, shown by Figure 1 (a).
The current transformer measures the electromagnetic field
surrounding the wire, from which the household power demand
can be calculated. As such, the sensor captures the same data
that will be reported by UK smart meters. The power data is
then transmitted to an in-home hub at 10 second intervals via
a ZigBee network, before being uploaded to a cloud storage
via an Ethernet connection to each home’s router.

4. APPLIANCE ENERGY ESTIMATION

In this section, we describe our approach which is able to
estimate the energy efficiency of both combined fridge-freezers
and separate refrigerator and freezers given only the household
aggregate power demand. First, we present the probabilistic
graphical model which we use to represent appliances. Second,
we describe the method by which the model can be used
to identify individual appliance’s signatures in the household
aggregate load. Third, we show how the extracted signatures
can be used to update the appliance model parameters to
represent the behaviour of the specific appliance instances in
a single household. Last, we show how such models can be
used to estimate the efficiency of that household’s appliances.

A. Appliance Modelling via Bayesian Hidden Markov Models
We adopt a state-of-the-art Bayesian approach to appliance
modelling using hidden Markov models (HMMs) [6, 7], as
shown by Figure 1 (b). In such a model, the discrete variables
of the model, x, represent the states of an appliance, while the
continuous variables, y, represent the power demand of that ap-
pliance. The start of the chain of appliance states is distributed
according to a categorical distribution with parameters π, and
a prior Dirichlet distribution with hyperparameters α̂. The
appliance’s state evolves via Markovian dynamics according
to a transition matrix, A, for which the prior distribution is a
vector of Dirichlet distributions with hyperparameters Ĉ. Last,
we model the power demand of each appliance state using a
Gaussian distribution with mean µ and precision τ , for which
the prior distribution is a Gaussian-Gamma distribution, with
mean λ̂ and precision r̂, and shape β̂ and scale ŵ, respectively.

The hyperparameters of the model, θ̂ = {α̂, Ĉ, λ̂, r̂, β̂, ŵ},
represent the behaviour of a broad appliance type (e.g. all re-
frigerators), and are learned from the Tracebase appliance data

set [8]. However, the appliance parameters, θ = {π,A,µ, τ},
represent the behaviour of a specific appliance instance in a
single household, and are therefore the variables which we aim
to infer from household aggregate data.

We use this HMM to represent the behaviour of combined
fridge-freezers within a constant aggregate load. However,
in households with a separate refrigerator and freezer, each
such appliance will produce a separate signature. As a result,
the sum of the two signals will appear within the aggregate
load. In such cases, we use a factorial hidden Markov model
(FHMM) which consists of two chains of discrete variables
corresponding to the separate refrigerator and freezer.

B. Identifying Appliance Signatures
We use the probabilistic appliance model described in the pre-
vious section to search for periods of the household aggregate
power demand during which only either the combined fridge-
freezer or separate refrigerator and freezer are changing state,
as proposed in our previous work [6]. This is achieved by
sliding a window through the aggregate data and calculating
the likelihood that the window of data was generated by the
modelled appliances. We first apply the basic HMM, and if
at least one signature is found that household is classified as
containing a combined fridge-freezer. If no signature is found,
we apply the FHMM with two appliance chains, and if at
least one signature is found that household is classified as
containing a separate refrigerator and freezer. However, if no
signature is found by either model, that household is classified
as containing either zero or three or more refrigerators and
freezers. Figure 1 (c) shows an example of this method for a
household containing a combined fridge-freezer, from which
it can be seen that the 02:00 - 05:00 window scores a high
likelihood of being generated by the fridge-freezer model.

However, it is important to note that our approach aims to
extract periods during which only the appliances of interest are
changing state, and that other appliances might be drawing a
constant power during this period. Therefore, in our approach,
the base-load is first subtracted from the aggregate load:

ỹi:j = ȳi:j −min(ȳi:j) (1)

where ȳi:j is a window of aggregate data ȳi, . . . , ȳj , and ỹi:j

is the same window after the base-load has been subtracted.
This ensures that the distributions over each state’s mean power
demand correspond between signatures. We determine whether
power data was generated only by the modelled appliances:

accept(ỹi:j) =

{
true if p(ỹi:j |θ̂) > D
false otherwise.

(2)

where ỹi:j is a window of aggregate data after the base-load
has been subtracted, D is an appliance specific likelihood
threshold, and p(ỹi:j |θ̂) is the likelihood of that window of
data given the general appliance model as calculated by:

p(ỹi:j |θ̂) =

∫∫
p(ỹi:j ,x|θ)p(θ|θ̂) dx dθ (3)

which intuitively represents the likelihood of the data, ỹi:j ,
given a general appliance model, θ̂, with the unknown states

www.alertme.com
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(a) Household aggregate elec-
tricity sensor
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(b) Detection accuracy of households with separate refrigerators and
freezers.
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(c) (i) Household power demand over 24 hours.
(ii) Log-odds of power with fridge-freezer model.

Fig. 1: Our approach to model appliances from single point of measurement.

x and instance parameters θ of the appliances integrated out.
The threshold D is set such that the model will accept windows
of data which can be sufficiently explained by either the HMM
or FHMM model, and reject any windows of data generated
by other appliance types or combinations of appliances. This
process identifies windows of aggregate data in which only one
or two appliances matching the general model change state.

C. Inferring Appliance Model Parameters
Our approach uses the signatures extracted from the household
aggregate load to update the general appliance parameters to
represent the behaviour of the specific appliances in a single
household. For households with a combined fridge-freezer, we
infer a posterior distribution over the variables θ via variational
message passing [9] implemented using Infer.NET [10]. How-
ever, Infer.NET does not support FHMMs, and therefore we
use Gibbs sampling for inference using the pyhsmm Python
library [7] for households with a separate fridge and freezer.

D. Estimating Appliance Energy Efficiency
Having inferred posterior distributions over the parameters of
the appliances in a single household, our approach subse-
quently estimates the annual appliance energy consumption:

E(n) =
24× 365

1000

K∑
k=1

µ
(n)
k

A
(n)
k,k

trace(A(n))
(4)

where trace(A) is a function which returns the sum of diagonal
elements of matrix A.

5. EVALUATION OF ENERGY EFFICIENCY ESTIMATION

In this section, we first evaluate the accuracy by which our
approach is able to detect whether each of the 117 households
contains a combined fridge-freezer or an individual refrigerator
and freezer. We then evaluate the accuracy by which our
approach estimated the energy efficiency of such appliances.

We evaluate the classification accuracy of households using
a ROC curve, which represents the trade-off between the frac-
tion of households containing a certain appliance which were
correctly detected, or true positive rate (TPR), and the fraction
of households which did not contain a certain appliance but

were incorrectly detected, or false positive rate (FPR), for
various likelihood thresholds, D. Since existing approaches are
only applicable to households for which models are known
for all appliances, instead we compare the performance of
our approach under two different general appliance models:
a refrigerator appliance model as learned from the Tracebase
data set [8] and a variant of this model in which the power
demand of the on state matches that of a combined fridge-
freezer. We also indicate the accuracy of a random classifier.

Figure 2 (a) shows a ROC curve which represents the
detection accuracy of our approach for households with a
combined fridge-freezer. It can be seen that the fridge-freezer
general appliance model performs preferably to the refrigerator
model for almost all trade-offs between TPR and FPR. This
matches the intuition that the combined fridge freezer model
should outperform a model representing only refrigerators
for households which contain a combined fridge freezer. A
particularly favourable trade-off is highlighted, at which the
combined fridge-freezer model is able to correctly detect 86%
of households while also producing less than 20% false posi-
tives. Figure 2 (b) shows a second ROC curve for households
with a separate refrigerator and freezer. Unlike the results for
the combined fridge-freezer model, it can be seen that neither
approach appears to be preferable for a range of likelihood
thresholds. This is likely due to the mixture of refrigerators,
freezers and combined fridge-freezers in such households, and
as a result, neither model produces superior performance.

Having evaluated the accuracy by which our approach is
able to classify whether households contain either a combined
fridge-freezer or a separate refrigerator and freezer, we now
evaluate the accuracy by which our approach is able to estimate
the energy efficiency of such appliances. We present results for
the households which were correctly classified as containing
either a combined fridge-freezer or a separate refrigerator and
freezer. This represents a subset of the 117 households, as some
households contained zero or more than two fridges and freez-
ers while others were incorrectly classified as discussed above.
We calculated the ground truth annual energy consumption by
manually labelling individual appliance signatures within the
aggregate load and scaling the energy consumption to one year.

Figure 2 (c) shows a histogram of the difference between
the estimated and actual annual energy consumption of the
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(a) Detection accuracy of households
with combined fridge-freezers.
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(b) Detection accuracy of households
with separate refrigerators and freezers.
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(c) Percentage error in estimate of an-
nual fridge-freezer energy consumption.
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(d) Percentage error in estimate of
fridge and freezer energy consumption.

Fig. 2: Results of appliance detection and energy consumption estimation.

fridge-freezers. For each household, the error is normalised
by the actual energy consumption of the fridge-freezer. It
can be seen that our approach is able to estimate the energy
consumption of the fridge-freezers to within 20% of the
actual energy consumption for 26 of the 30 households, while
the fridge-freezer energy consumption for the remaining 4
households are estimated with less than 35% error (mean =
11%). Therefore, it would be appropriate to provide feedback
regarding the benefits of replacing their fridge-freezer to the
households for which the fridge-freezer energy consumption
was estimated to be more than 35% greater than that of an
energy efficient replacement, which corresponds to 21 out of
the 30 households. Furthermore, we calculated time until the
annual financial savings have offset the cost of the replacement
appliance, which was as low as 2.5 years for the household
with the least efficient appliances, assuming a cost of electricity
of £0.15/kWh and a cost of replacement of £429.

Figure 2 (d) shows a similar histogram for households
containing a separate refrigerator and freezer. It can be seen
that the error is systematically greater than for households with
combined fridge-freezers, with only 9 of the 15 households’
total refrigerator and freezer energy consumption estimated
with less than 20% error, while the remaining 6 households
were estimated with a maximum of 45% error. This indicates
that it is more difficult to estimate the energy consumption in
households with a combined fridge-freezer than in households
with a separate refrigerator and freezer. However, although
the normalised error is greater, so is the difference in energy
consumption between the estimated total of refrigerators and
freezers and a replacement combined fridge-freezer. As a re-
sult, it would be appropriate to provide feedback regarding the
benefits of replacing their separate refrigerators and freezers
with a combined fridge-freezer to the households for which
the combined fridge-freezer energy consumption was estimated
to be more than 45% greater than that of an energy efficient
replacement, which corresponds to 10 of the 15 households.
We calculcated the time until the annual financial savings have
offset the cost of the replacement appliance to be as low as 5
years for the household with the least efficient appliances.

6. CONCLUSION

In this paper, we have presented the first application of energy
disaggregation research to a large number of households’ smart

meter data. Crucially, our approach does not require training
data to be collected by sub-metering individual appliances, nor
does it assume any knowledge of the appliances present in the
household. Instead, the approach uses prior models of general
appliance types used to first identify which appliances are
present in a household, and subsequently estimate the energy
efficiency of such appliances. We evaluated the accuracy with
which our approach could classify the type of refrigerator and
freezer in a household, and the accuracy by which the energy
efficiency of such appliances could be estimated, and showed
that the energy saved by replacing the appliance can offset the
cost of replacement in as little as 2.5 years. Future work will
consist of a user study which will assess whether such feedback
motivates the household occupants to replace their appliances
and whether such actions produced the forecast savings.
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