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Abstract— In this work we address two issues in energy 

disaggregation that are often overlooked – the problem of 

missing data, and, the problem of outliers. The first problem 

arises when the smart-meter cannot transmit the readings to the 

server owing to malfunctioning of the WiFi. The second problem 

arises from transients, surges and other non-linear effects. We 

modify the dictionary learning based disaggregation framework 

to address these problems. Results on the REDD dataset shows 

that results indeed improve when these issues are addressed 

explicitly.   

Keywords— Energy Disaggregation, Missing Data, Dictionary 

Learning, Robust Learning,  

I.  INTRODUCTION  

In this work we propose to address two overlooked 

imperfections in energy disaggregation data. The first one is 

the problem of missing readings and the second one is 

regarding large yet sparse outliers.  

In a typical experimental set-up, the data (training and 

testing) is collected by attaching smart-meters to individual 

appliances, which acquire the reading at periodic intervals 

and transmit these to a remote server wirelessly. Many a 

times the wireless connection does not work and hence the 

readings acquired during that period is not transmitted. This 

leads to missing data; it is common phenomenon in almost all 

energy disaggregation datasets. This is the first issue we 

propose to address in this work.  

The second issue is regarding outliers. Energy 

disaggregation datasets are often corrupted by large but 

sparse noise (outlier). This may arise in several ways. It can 

occur from transients, voltage / current surges. In all such 

cases the anomaly is of large magnitude but for a very short 

duration. Such spikes are uncontrollable and do not show any 

characteristics of the appliance under study.  

The other reason for occurrence of such spiky outliers is 

owing to non-linear effects. The assumption that total power 

is a sum of individual power consumed by different 

appliances only holds for passive loads. The non-linearity can 

arise in two ways – 

1. Today, most of our appliances such as refrigerators, AC’s, 

washers, microwaves, laptops, printers etc. are quite 

sophisticated and cannot be modeled as passive loads. They 

have internal sources of electromagnetic emission, e.g. the 

switched mode power supplies (SMPS) in a desktop or a 

laptop adapter. These secondary sources of emission can 

interfere with the loads on the power lines depending on the 

proximity of the loads as well as their frequency response. In 

such cases, where the appliance needs to be modeled as a 

combination of a source and a load, the linear mixing model 

does not hold [1]. 

2. Secondly, the reactive components of the loads 

(transformers, magnetic and capacitive elements within the 

power supplies and AC to DC converters) exhibit non-linear 

behavior depending on the frequency of operation. 

Non-linear loads are however, challenging to model. A 

seemingly unrelated of research, in hyperspectral unmixing, 

faces a similar issue. A recent study [2], showed that the non-

linear mixing problem can be approximated as a sum of linear 

mixing and non-linear perturbations. The perturbations can 

be assumed to be sparse, i.e. the effect is localized but may 

be of relatively large magnitude.  

The issues of data fidelity were first discussed in [3]; the 

author (of [3]) also released a code for pre-pre-processing 

such datasets [4]. Our work is different from the approach 

presented in [3]; we do not try to ‘cure’ the data by pre-

processing, rather we mathematically model the 

imperfections.  

The first problem of missing data is usually handled in a 

heuristic fashion by the NILM research community. The 

missing values either by imputed by prior readings or at best 

by nearest neighbour interpolation. In this work, we do not 

interpolate the missing readings, rather we modify the 

mathematical framework for disaggregation in order to 

accommodate information regarding missing readings.  

The second problem, i.e. the problem of spiky outliers 

have been largely ignored by NILM researchers until recently 

[5]. Prior studies assumed that the noise in the system is small 

(Normally distributed) and hence employed a Euclidean data 

fidelity term. A recent study [5] argued about the existence of 

sparse but large outliers and following studies in robust 

estimation proposed a robust data fidelity term based on 

absolute deviations. In this work we follow the same 

approach.  

II. LITERATURE REVIEW  

The topic of Compressed Sensing (CS) has literally 

revolutionized signal processing research in the past decade. 

It studies the problem of solving an under-determined linear 

inverse problem where the solution is known to be sparse.  
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In general there are infinitely many solutions to (1). CS is 

interested in the case where the solution is s-sparse, i.e. x has 

only s non-zero values, the rest n-s being zeroes.  
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Donoho’s seminal work [6] showed that a sparse solution 

is in most cases unique. CS literature shows that such a sparse 

solution can be recovered by l1-minimization [6].  
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For most practical problems the signal is not sparse in 

itself but has an approximately sparse representation in the 

transform domain. Orthogonal and tight-frame transforms are 

useful in this case since the synthesis (3a) and analysis (3b) 

equations hold. 

synthesis: x W     (3a) 

analysis: TW x      (3b) 

where W is the sparsifying transform (wavelet / DCT for 

image, wavelet for EEG / ECG, STFT for speech etc.) and α 

the sparse transform coefficients.  

This allows inverse problems arising from sparsifiable 

natural signals to be expressed in the following form,  

y AW        (4) 

The sparse transform coefficients are solved using l1-

minimization (2) from which the signal of interest is obtained 

by applying the synthesis equation (3a). In CS lingo, A is 

called the measurement operator and W the sparsifying 

transform.  

Dictionary learning gained popularity with the advent of 

K-SVD [7]. It was showed that instead of using fixed basis 

(like wavelet, DCT etc.) better solutions can be achieved by 

learning the sparsity basis from data. For dictionary learning, 

one needs training data (say X) from which a dictionary (D) 

is learnt such that the coefficients (Z) are sparse. The 

synthesis dictionary learning problem is framed as, 

X DZ      (5) 

The learning can be framed in various ways. The basic 

constraints are Z should be sparse and there should not be 

degenerate solutions, i.e. very large D and small Z or vice 

versa. This can be prevented in several ways. K-SVD 

proposes an elegant (albeit slow) solution based on rank-1 

updates. Others propose a normalization constraint on the 

columns of the dictionary. But the easiest formulation is to 

have a simple Frobenius norm penalty on the dictionary as a 

whole. This leads to the following formulation –  
2 2

1 1 1,
min

F FD Z
X DZ D Z       (6) 

This (6) constitutes the training phase. The learnt 

dictionary is used as the sparsifying basis in the testing phase 

for solving the sparse inverse problem.  

Blind Compressed Sensing (BCS) [8] marries CS with 

dictionary learning. Instead of learning the dictionary in an 

offline fashion and then using it for solving the inverse 

problem, it learns the dictionary on the go. Obviously, it can 

be only used for multiple measurement vector (MMV) 

problems; this is because many samples would be needed to 

robustly estimate the dictionary.  

Say the problem is to solve Y AX ; according to the 

dictionary learning formulation one assumes X DZ ; 

incorporating one into the other leads to –  

Y AX ADZ       (7) 

The solution to (7) is formulated as follows,  
2 2

1 1 1,
min

F FD Z
X ADZ D D      

 (8) 

III. PROPOSED APPROACH  

A. Handling Missing Readings 

The approach towards energy disaggregation is broadly 

based on the nature of the targeted household and commercial 

appliances. These appliances can be broadly categorised as 

simple two-state (on/off) appliances such as electrical 

toasters and irons; more complex multistate appliances like 

refrigerators and washing machines; and continuously 

varying appliances such as IT loads (printers, modems, 

laptops etc.). The earliest techniques were based on using real 

and reactive power measured by residential smart meters. The 

appliances’ power consumption patterns were modelled as 

finite state machines [9]. These techniques were successful 

for desegregating simple two state and multistate appliances, 

but they performed poorly in the case of time-varying 

appliances which do not show a marked step increase in the 

power. More recent techniques, based on stochastic finite 

state machines (Hidden Markov Models) [10], have improved 

upon the prior approach. Current techniques are based on 

learning a basis / model for individual appliances. Sparse 

coding and dictionary learning based approaches like [11, 12] 

fall under this category. 

Kolter et al [11], assumed that there is training data 
collected over time, where the smart-meter logs only 
consumption from a single device only. This can be expressed 
as Xi where i is the index for an appliance, the columns of Xi 
are the readings over a period of time. For each appliance they 
learnt a codebook; this assumption is expressed in (9). 

  
X

i
= D

i
Z

i
,  i =1...N      (9) 

where Di represents the codebook/dictionary and Zi are the 

coefficients, assumed to be sparse. This is a typical dictionary 

learning problem with sparse coefficients. 

As mentioned in the introduction, the training cannot be 

recorded owing to malfunctioning of the WiFi. Prior studies 

used to impute the missing data based on simple approaches 

such as nearest neighbour interpolation. In this work, we do 

not interpolate the data; rather we model the missing 

readings. 

i i i i i iY R X R D Z      (10) 

where Ri is the binary sampling mask; it is 1 when the reading 

has been obtained and 0 when the reading is missing. Yi is the 

data that is actually obtained (at the server). 

The estimation problem (for dictionary and coefficients) 

is expressed as, 
2 2

1 1 1,
min

i i
i i i i i iF FD Z

Y R D Z D Z      (11) 

This is akin to the BCS formulation. The algorithm for 

solving this problem is available at [13].  



The missing data problem exists also in the test / 

disaggregation phase. The aggregate reading is expressed as 

the power reading from individual appliances. 
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The dictionaries are obtained from training, the task at 

disaggregation is to estimate the coefficients Zi’s; this is done 

by simple l1-minimization. 
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Once the loading coefficients are estimated, the 

consumption for each appliance is obtained by: 

  
X̂

i
= D

i
Z

i
,  i =1...N     (14) 

The issue of missing reading arises during disaggregation 

as well. A more appropriate model (compared to prior 

studies) would be express the problem as Y R X . Thus 

the recovery is posed as a simple CS problem.  
2

2 1
min

FZ
Y R DZ Z     (15) 

B. Handling Outliers 

In the previous sub-section we go by the assumption that 

the noise in the system, if any, is small. Hence the l2-norm 

data fidelity term is justifiable. However, as discussed in the 

introduction, this is not the case. Training data is corrupted 

by sparse but large outliers arising from electrical surges and 

transients. The test data is corrupted not only by such surges 

and transients but also effects arising out of non-linear 

mixing. In such cases, where the noise appears as large and 

sparse outliers, the l2-norm is not optimal.  

There is a large body of literature in robust statistics that 

argues against the usage of l2-norm minimization; it works 

when the deviations are small – approximately Normally 

distributed; but fail when there are large outliers (as in our 

case). The Huber function [14] has been in use for more than 

half a century in this respect. The Huber function is an 

approximation of the more recent absolute distance based 

measures (l1-norm). Recent studies in robust estimation 

prefer minimizing the l1-norm instead of the Huber function 

[14]-[16]. The l1-norm does not bloat the distance between 

the estimate and the outliers and hence is robust. 

Following such studies in robust estimation, we propose 

to employ l1-norm data fidelity term in place of the l2-norm. 

For the scenario where the data is assumed to be complete (by 

simple interpolation) has been addressed in [3]. In this work 

we look at a more challenging problem – and model the 

missing readings. Therefore the corresponding formulation 

for the training (modifying (11)) and test / disaggregation 

(modifying (15)) phases are: 
2

1 11 1,
min

i i
i i i i i iFD Z

Y R D Z D Z      (16) 

21 1
min

Z
Y R DZ Z     (17) 

The solution for (17) is a standard one. Here we use the 

YALL1 algorithm [17]. However, solving (16) is not so 

straightforward; no off-the-shelf algorithm exists for (16). 

We derive an algorithm in the following sub-section. 

C. Deriving a solution for (16) 

Dropping the subscript ‘i’ from (16) (for the sake of 

simplicity) the task is to solve: 
2

1 11 1,
min

FD Z
Y R DZ D Z     

An elegant way to solve this problem is via the Split Bregman 

technique. We substitute P Y R DZ  , and introduce the 

Bregman relaxation variable (B) leading to,   
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1 11 1, ,
min

F FP D Z
P D Z P Y R DZ B         

This can be recast into the alternating minimization of the 

following sub-problems: 

 
2

1
P1:min

FP
P P Y R DZ B      
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1P2:min
F FD

D P Y R DZ B      

 
2

1 1
P3:min

FZ
Z P Y R DZ B      

P2 is the easiest to solve; it is a least squared problem 

having a closed form solution. P1 is has a closed form 

solution via soft thresholding. P3 needs to be solved 

iteratively via iterative soft thresholding. The usual constraint 

about positivity is enforced on the coefficient Z after every 

update.  

The final step is to update the Bregman relaxation 

variable, 

 B P Y R DZ B     

There are two stopping criteria for the Split Bregman 

algorithm. Iterations continue till the objective function 

converges (to a local minima) or if the maximum number of 

iterations reach 200. 

IV. EXPERIMENTAL RESULTS 

We evaluate our proposed energy disaggregation 

framework on the REDD dataset [18]. The dataset consists of 

power consumption readings from six different houses, where 

for each house, the whole electricity consumption as well as 

electricity consumptions of about twenty different devices are 

recorded. The signals from each house are collected over a 

period of two weeks with a high frequency sampling rate of 

15kHz. The details of the dataset can be found in [18]. The 

5th house is omitted since it does not have enough data. This 

evaluation protocol has been outlined in [18]. The evaluation 

metric has also been defined in the previous work as 

‘disaggregation accuracy’. 
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where t denotes time instant and n denotes a device; the 2 

factor in the denominator is to discount the fact that the 

absolute value will “double count” errors.  

In [3] it was shown that robust dictionary learning (with 

sparse coefficients) yields better results than standard the 

simple sparse coding proposed in [11] and the Factorial 

Hidden Model (FHMM) [10]. Therefore we compare our 

proposed approach only with [3]. We also compare ours with 

the powerlet based technique [12]. These [3, 12] are the most 

recent algorithms on energy disaggregation.  

As outlined in [18], there are two modes of testing. In the 

Training mode, a portion of the data from every household is 

used as training samples and rest (from those households) is 

used for prediction. In the Testing mode, the data from four 

households are used for training and the remaining one is 

used for prediction; this is a more challenging problem. 

Our proposed algorithm requires specifying two 

parameters (λ1, λ2) and one hyperparameter (μ). Some recent 

studies have shown that in a Split Bregman based technique, 

one can put the parameters to be unity and only tune the μ. 

We use the simple L-curve method to find out the 

hyperparameter; the value we obtained is μ=0.01. 

 

Table. 1. Energy Disaggregation Results (in %) 

House Training Accuracy Testing Accuracy 

 [3] [12] Prop [3] [12] Prop 

1 75.5 81.6 77.0 53.0 46.0 54.5 

2 66.7 79.0 69.1 56.3 49.2 58.0 

3 65.2 61.8 67.0 43.9 31.7 45.7 

4 63.7 58.5 65.9 60.1 50.9 61.6 

6 68.5 79.1 70.2 60.2 54.5 62.0 

 

Comparison with [3] gives us insight regarding the 

importance of modelling missing readings. We show that 

instead of imputing the readings in a naïve fashion, better 

disaggregation results can be achieved if the missing values 

are modelled into the formulation. 

We see that the powerlet based method [12] outperforms 

the simple yet robust learning techniques ([3] and proposed) 

for the case where the training data is scant but the test 

conditions are simple; training mode – data from the same 

house is for training and testing. But the powerlet based 

method shows poor performance when the training data 

volume increases but at the same time the problem becomes 

more challenging; testing mode – data from 4 houses are used 

for training and the 5th house is used for testing. 

V. CONCLUSION 

In this work we address two often ignored problems that 

are ever-present non-intrusive load monitoring. The first 

problem is of missing readings in the dataset – arising out of 

malfunctioning of the wireless network. The second problem 

is that of large and sparse outliers occurring out of transients, 

surges and non-linearities in the load.  

The second problem has been handled in a recent work 

[5]. For the first time in this work, we are addressing the 

missing data and problem and combining it with the outlier 

removal problem in a single combined framework. It was 

shown in the prior study [5] that better results are indeed 

obtained when outliers are removed; in this work we show 

that the results can be further improved by accounting for the 

missing readings.  

We have used the simplest possible formulation for 

dictionary learning. In [11] it was shown that better 

disaggregation results can be achieved when disaggregating 

terms are appended to the formulation in the learning phase. 

In the future we want to extend our proposed framework to 

such sophisticated learning formulations. We would also like 

to test our techniques on larger datasets.  
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