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Abstract - Office buildings are the major consumers of electricity 
after residential buildings. In order to achieve long-term energy 
sustainability, energy disaggregation techniques have to account 
for office buildings, especially for electronic appliances.  Prior 
work proposed a new sensing technique using EMI signals to 
detect electronic appliances. However, it is known to have 
significant limitations. In this work we propose a new feature and 
a sensor for EMI sensing. We also evaluate the efficacy of both of 
these features on a real dataset and demonstrate an improvement 
in appliance detection accuracy up to 87.3% vs. 49.6% accuracy 
from previous feature.    

Keywords — Electromagnetic interference (EMI); Common 
mode (CM); Differential mode (DM). 

I. INTRODUCTION  
Office buildings account for the majority of the energy 

consumption (approx. 20%) after residential buildings and 
electronic appliances like IT loads and lighting are the second 
highest major consumers. However, most of the existing NILM 
methods, using low frequency smart meter data fail to detect 
these loads due to time-varying power consumption of these 
loads. Recently, a promising technique, using high frequency 
EMI signals to detect electronic loads is proposed [2]. Most 
consumer and power appliances with switched mode power 
supplies (SMPS) inject EMI into the power lines. EMI from 
appliances is coupled in differential mode (DM) or common 
mode (CM). Details of DM and CM EMI and their coupling 
mechanisms can be found in [1]. The authors in [2] postulated 
that appliances generate a unique and time-invariant DM EMI 
between the phase and neutral terminals, which can be 
exploited as a reliable feature vector for appliance 
classification. However, [3] has shown several of the 
challenges associated with using the DM EMI as a reliable 
feature vector. In this work we propose CM EMI as a feature 
for appliance detection, which is having following merits over 
DM EMI - 

a). CM currents, which are generated at low frequencies 
due to capacitive coupling. Hence, are likely to attenuate more 
gradually with the increase in line impedance.  

b). Earth wire (where the CM measurements can be made) 
is not meant for conduction of mains power supply and only 
meant for common mode leakage currents. As a result the noise 
floor on CM measurements is likely to be much lower than 
DM.  

c). In contrast to DM EMI, most appliances are not fitted 
with CM filters since CM noise is far less likely to impact the 
functioning of neighboring appliances. 

II. MEASUREMENT OF CM AND DM COMPONENTS 
A single-phase power supply (or a single branch of a three 
phase power supply) consists of three power lines: the phase, 
neutral and earth, which are characterized by transmission line 
impedances Z . The power supply may be single ended or split 
phase with a 230V, 50Hz (Indian standard) between phase and 
neutral. In our work, we consider the more commonly found 
single ended supply where the neutral and earth terminals are 
shorted at the distribution transformer outlet. In the case of 
split phase power supplies, the CM and DM can be measured 
by the sum and difference of phase (Vp ) and neutral (Vn ) 
voltages with respect to the earth measured at the power 
supply.    

VCM =Vp +Vn  (1) 
VDM =Vp −Vn  (2) 

In single-phase power supplies, DM can be measured by the 
potential difference between the phase and the neutral. But the 
measurement of CM is more challenging. One method is to 
measure Vdm and Vp independently and estimate Vcm by 

subtracting Vdm  from Vp . The advantage of this technique is 
that it can be applied to both two pin and three pin appliances. 
However, in practice, the performance of this technique is poor 
due to (1) the phase mismatch between DM and CM 
components and (2) because the magnitude of DM 
measurements usually exceeds the magnitude of CM by a few 
orders due to power supply harmonics. A second method is to 
directly measure the earth currents, which correspond to the 
CM components. The main advantage of this method is that the 
background noise across the earth lines is much lower than the 
phase and neutral lines. However, this technique can only be 
applied to three pin appliances due to the absence of a physical 
earth line connection in two pin appliances.  

III. PROPOSED WORK 
A. Plug and Play EMI Sensor Using Conducted EMI for 

Appliance Detection  
We propose a low cost, portable sensor, made with off-the-
shelf components, that is capable of simultaneously measuring 
both the CM and DM EMI components from appliances on the 
single phase (single ended) power lines. The DM component 
is estimated from the potential difference between the phase 
and neutral lines as shown in Figure. 1(a). The power signal 
(230V, 50Hz) and some of its lower harmonics are removed  
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Fig. 1: (a) Proposed EMI Sensor which is capable of simultaneously sensing CM and DM EMI on the mains power lines; (b) actual prototype; (c) Reference 
viewgraph of the DM EMI sensor developed previously by [14]. The power line interface in (c) corresponds to the high pass filter in (b) and the USRP in (c) 
corresponds to the DAQ in (b).   
from the signal through a differential high pass filter (Fc= 
9kHz). The CM signal is estimated by measuring the voltage 
across a current sense resistor ( Rs ) on the earth line. Note that 
while the current sense resistor offers a cheap technique for 
measuring the CM currents, the deployment introduces a 
break in the connection between the power supply and the 
appliance (or the power line feeding multiple appliances). A 
non-intrusive, but more expensive alternative, would be to 
introduce a current sensing coil around the earth line. The data 
acquisition is carried out with the open source high speed Red 
Pitaya board. Both the CM and DM data are acquired at a 
sampling frequency of 15.625MHz and stored in internal 
buffers. The data from the buffers can be loaded into a server 
or CPU for further processing. The equivalent circuit of our 
proposed sensor is shown in Figure. 1(a), Figure. 1(b) shows 
the actual prototype and Figure. 1(c) shows a contrasting 
sensing solution developed in [2].  

B. Signal Processing and Feature Extraction  
Consider that there are I appliance categories and J instances 
of each category. Accordingly, xi, js (t)  represents a single trace 
or sample from S  time-domain EMI traces measured for the 
j th  instance of appliance category i. The time-domain data 

gathered by the sensor for each appliance are not directly used 
as a feature vector for classification because the measurements 
are not synchronized. Instead, we hypothesize that the CM 
EMI data from each appliance has a unique histogram that can 
be used as its signature. The histogram, derived from each 
sample ( s ), is obtained by binning the time domain data 
based on its magnitude. The distribution can be uniquely 
described by certain statistics. In this work, we extracted the 
following features from the histograms for classification: 
{entropy, skewness, interquartile range, kurtosis, percentile-
75, range, maximum, median, percentile-90, mean absolute 
deviation}. The features are listed in the order of their 
effectiveness towards classification and form a vector for each 
sample trace ( fi, js ). Features such as minimum and percentile-
25 are not used since they look identical across multiple 
classes when we consider the magnitude of the measured data. 

The data from one instance ( !j ), of appliance category ( !i ), 
are used for training while the data from the remaining 
instances (test instances j ≠ "j ) are used for testing. The mean 
of the statistics, f̂ !i , !j from all the traces corresponding to !j , is 

used as the training model. Each trace of the testing instances 
( j ), corresponding to appliance category ( i ), is treated as a 
separate test case. A test case is classified based on the 
minimum Euclidean distance between the test vector, fi, js , and 
the training models for all the appliances as shown below.  

min
!i

f si, j − f̂ !i , !j 2

2
∨i, j ≠ !j   (5) 

IV. EXPERIMENTAL SETUP 
The common IT loads and lighting sources in most offices are 
CPUs, LCD monitors, laptops, telephones, modems, wireless 
routers, printers and CFL lamps. Smart meters have not been 
successful in detecting these appliances. Additionally, these 
appliances are fitted with high quality EMI filters to reject DM 
EMI emission. Therefore, they are difficult to detect with DM 
EMI data. In this section, we show the utility of CM feature 
vector for successfully detecting some of these appliances. In 
most office setups, multiple appliances of the same type (make 
and model) are used due to logistical reasons. Due to practical 
considerations, only a single instance of an appliance can be 
used for generating training data for learning the features. 
However, once the features are learnt, they must be useful for 
detecting other instances of the same appliance type. 
Therefore, in this work, our classification algorithm is trained 
on data from a single instance of each appliance category and 
is used to detect other instances of the same type. This test 
protocol marks a significant departure from previous works in 
this domain. We carried out the measurements inside the 
office precincts of our institute where the appliances are 
powered from an uninterrupted mains power supply (UPS). 
The EMI sensor, described in the previous Section, is 
connected to an outlet on an extension cord that is connected 
to the UPS. Additional measurements are made on the power 
line without connecting any of the appliances. This is useful in 
determining the background noise on the power lines in the 
absence of the appliance under test (AUT). The EMI data 
collection from the twenty-five individual appliances (five 
instances of each of the five appliance categories) spanned 
over a week from which we considered a data set spanning 5-6 
hours (which includes measurement and logging time). In the 
next two Sections, we discuss the measurement data and 
classification results for all appliances. 

V. MEASUREMENT RESULTS 
Time-domain CM and DM EMI are measured simultaneously 
for each individual instance of an appliance at a sampling  
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Fig. 2: Frequency domain plots showing (a) common mode EMI and (b) differential mode EMI measured from 5 appliances. They are Laptop charger (LC), CFL, 
LCD, CPU and Printer (PRT) (along with background noise (BGN) on the power lines before the appliance was turned on). 
frequency of 15.625MHz. Each time domain trace is 150ms 
long. A total of 10 traces are collected for every appliance 
instance and there are 5 instances of each appliance. 
Corresponding amount of background data are also collected. 
A. Frequency Domain Results  
Figure. 2(a) and Figure. 2(b) show the frequency domain CM 
and DM signatures of an instance of each of the laptop charger 
(LC), CPU, CFL, LCD monitor and printer (PRT). The 
frequency range of interest is from DC to 5MHz. Before 
turning on the appliance, the background noise on the power 
lines are measured for each case. This exercise was carried out 
to monitor the change in the background noise characteristics 
in the power lines during the measurements. We note that 
across all the figures, the background noise in the CM 
measurements (−100dBm to −130dBm) is lower than the DM 
measurements (−60dBm to −120dBm). This is possibly 
because of the absence of power line harmonics and other 
fluctuations on the earth line where CM is measured. 
Secondly, we observe that above 4MHz, the frequency data 
look identical for all the appliances as it is dominated by the 
background noise on the power lines. Finally, the CM 
signatures are reasonably consistent across multiple instances 
of the same appliance make and model. This is not true for the 
case of DM. These results are not shown here due to 
constraints of space. In the case of the laptop charger (LC) and 
LCD monitor, a broad band CM noise can be discerned over 
the background noise floor, up to 2MHz. The average signal to 
noise ratio over this band of frequencies is 15dBm and 20dBm 
respectively. However, the poor DM to noise ratio, clearly 
shows that the EMI filters in the laptops and monitors have 
successfully removed all DM EMI. Therefore, the detection of 
these appliances is likely to be very poor if DM data are used 
as feature vectors for classification. Considerable CM and DM 
EMI are observed in the case of CFL. The average SNR across 
the entire frequency domain, are 30dB and 25dB respectively 
for CM and DM respectively. The EMI signatures from CFL 
are characterized by the fundamental peak, at 41.4kHz, 
corresponding to the switching frequency of the power 
supplies within the CFL and its higher order harmonics. 
Therefore, we anticipate that both CM and DM data can be 
successfully used for identifying CFLs. In the case of the CPU 
and printer, the background noise on the CM measurements 

were occasionally high. This may affect the classification 
results in these cases. In this work, we chose to not use the 
frequency domain data for machine learning and classification 
since a large portion of the data, from 4MHz to 7.8125MHz 
(half the sampling frequency) show significant overlap across 
the multiple appliances.  
B. Histograms  

Time domain measurements are not synchronized in any 
manner. Hence they show considerable variation across 
multiple instances of the same appliance and across time 
depending on the starting time (and phase) of the 
measurements. Therefore, these traces cannot be directly used 
as signatures for appliance classification. Figure.3 shows the 
normalized number of counts per bin (histogram) of the 
magnitude of the CM EMI from 1 (out of 5) instances of each 
appliance category along with background class. Each of these 
histograms are drawn from data from a single time-domain 
trace of 150ms. The figures show the following features: the 
histograms of the measured voltages show considerable 
variation across different appliance categories. The most 
distinct histogram belongs to the CFL and the background 
noise category. CPU, printer and LCD have roughly similar 
histograms. However, due to distinct peak values and width of 
slope in histograms, statistics such as kurtosis and skewness 
are able to capture this dissimilarity. Therefore, statistics 
(listed in Section III.B) that describe the histogram can form 
the basis for appliance detection and classification. DM data 
that are dominated by background noise show very similar 
histograms across multiple appliance categories. These 
histograms are not shown here due to constraints in space. 

VI. CLASSIFICATION RESULTS AND DISCUSSION  
As mentioned earlier, there are 6 categories in the 

classification - {LCD monitor, Laptop Charger (LC), CFL, 
CPU, Printer (PRT) and Background (BGN)}. The last 
category, {BGN}, implies the absence of any of the other five 
IT appliances on the power line. 10 samples were measured 
for each of the 5 instances of every appliance category. Thus, I 
= 6, J = 5 and S = 10 based on the definitions provided in 
Section III.B. The training model is the vector formed from 
the mean of the statistics drawn from the histograms 
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Fig. 3: Histogram (normalized number of counts per bin) of CM EMI data, of five appliances (from 1 of 5 instances) (a) Laptop charger (LC) (b) CFL (c) LCD 

(d) CPU (e) Printer (PRT) (f) Background noise (BGN) (when none of the appliances were operational). 
corresponding to the samples of the training instance (20% of 
measured data).  Each of the samples from the remaining four 
test instances form an individual test case (80% of measured 
data). Five-fold cross validation is carried out where the 
training and testing instances are swapped. As a result, there 
are a total of 200 (4 x 10 x 5) test samples corresponding to 
each appliance category. Each test case is assigned to one of 
the 6 appliance categories on the basis of the minimum 
Euclidean distance between the test feature vector and the 
training models as described in (5). We carry out the 
classification process using CM EMI data and then repeat the 
process with DM EMI data. We present the appliance 
confusion matrix along with precision and recall results from 
the nearest neighbor based classification algorithm on a per 
appliance basis in Table I(A) and Table I(B). The column 
headers, in the tables, indicate the classification classes 
whereas the row headers indicate the test classes. The 
highlighted features in the table indicate correctly identified 
test cases. Together, the precision and recall indicate the 
accuracy of the classification algorithm and the efficacy of the 
chosen feature vector. 
The following inferences can be drawn from the results: the 
average CM EMI precision and recall results (87.3% and 
86.8% respectively) are far superior to the DM EMI precision 
and recall results (49.6%, 45.2% respectively). This validates 
the key hypothesis of our paper that CM EMI is a far superior 
feature for IT appliance detection compared to DM EMI. The 
poor performance of the DM results can be attributed to the 
high background noise (−60 to −120dBm) that dominated the 
DM measurements as seen in Figure. 2(b). The background 
results in the CM EMI case is 100% (both precision and 
recall) compared to the low values for DM EMI. This is 
because of the distinct low noise floor that was observed in the 
CM EMI measurements due to the absence of the power signal 
and its higher order harmonics. Past research efforts, using 
either smart meters or DM EMI, have reported the challenges 
in detecting IT appliances such as laptop chargers, LCD 
monitors and printers. Since these appliances are usually fitted 
with powerful DM EMI filters, they show very poor 
performance with respect to DM EMI (16.5%, 33.5% and 
39.5% recall for laptop chargers, LCD monitors and printers 
respectively). The high precision and low recall value for 
printers, in the DM EMI case, is due to the poor SNR in the 
measurements due to the high background noise values. The 
classification of printers is therefore, largely on the basis of 
background noise rather than EMI signal itself. Nevertheless, 
these appliances are accurately detected with their CM EMI 

signatures (above 90% precision and recall for laptop chargers 
and printers; 72% for LCD monitors). CFLs can be accurately 
detected using either DM EMI or CM EMI data due to their 

strong and unique signatures and the absence of any type of 
EMI filters (DM and CM). Desktop CPUs show some 
improvement from DM EMI to CM EMI (from 35% to 60%). 
However, these appliances still remain challenging to detect. 
This can be attributed to the high background noise floor in 
the CM measurements of the CPUs (refer Figure. 2).  

VII. CONCLUSION 
In this work (and all other prior works related to EMI 
sensing), the feature extraction for classification is carried out 
when the appliances are individually connected to the power 
lines. We have limited the study to one appliance at a time in 
order to evaluate the signal quality, stability and consistency 
across multiple instances of same appliance. In order to detect 
an appliance in the presence of multiple appliances, more 
complex appliance features, extracted from better machine 
learning techniques may be needed. However, CM EMI will 
still serve as a useful signal for classification since CM EMI 
(unlike DM EMI) does not couple between multiple 
appliances. Therefore, this problem presents a unique 
opportunity for future research in this field.  
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TABLE I - RESULTS FROM NEAREST NEIGHBOR BASED CLASSIFICATION ON 
(A) CM EMI DATA AND (B) DM EMI DATA ON 6 CLASSES 

 BGN LC LCD CFL CPU PRT Recall 
(%) 

BGN 200 0 0 0 0 0 100 
LC 0 197 3 0 0  0  98.5 

LCD 0 15 144 0 33 8 72 
CFL 0 0 0 200 0 0 100 
CPU 0 0 12 0 119 69 59.5 
PRT 0 0 1 0 17 182 91 

Precision 
(%) 100 92.9 90 100 70.4 70.3  

 
 

 

 BGN LC LCD CFL CPU PRT Recall 
(%) 

BGN 99 30 61 0 10 0 49.5 
LC 106 33 43 0 18  0  16.5 

LCD 87 29 67 0 17 0 33.5 
CFL 3 4 0 193 0 0 96.5 
CPU 51 22 38 0 69 20 34.5 
PRT 7 5 12 0 97 79 39.5 

Precision 
(%) 28.1 26.8 30.3 100 32.7 79.6  
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