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Abstract—Finding models that can efficiently represent load
signals is one key issue in non-intrusive load monitoring (NILM)
because they are the foundation of most load disaggregation
algorithms. In the past, the factorial hidden Markov model
(fHMM) has been proposed as one probabilistic model for the
aggregate real power measurement. It is assumed that each load
can be represented as one hidden Markov model (HMM) and
the HMMs of all loads have been learned successfully before
disaggregation. Although fHMM showed some promising results
for eventless disaggregation, a detailed investigation on how well
HMM is suited to model load signals is still missing till today.
In this paper, we study the feasibility of HMM modeling for
different categories of loads by using the UK-DALE dataset and
propose a method for model adaptation across different houses.

Index Terms—Non-intrusive load monitoring (NILM), hidden
Markov model (HMM), model selection, model adaptation

I. Introduction

Non-Intrusive load monitoring (NILM) is a challenging

single channel source separation problem. One of the key

issues to solve the separation problem is to find suitable signal

models which are able to capture the major properties of

different load signals and which can be used to infer the single

load components from the aggregate signal.

Finding suitable signal models for NILM is a challenging

task not yet solved satisfactorily. Load signals show strong

hierarchical time dependencies ranging from seconds, hours to

days, weeks and even longer. There are different ways to model

load signals. Current event-based disaggregation algorithms

divide the measured power signal into segments and model

it as a sequence of piecewise constant power levels [1], [2],

[3], [4]. For eventless approaches, the factorial hidden Markov

model (fHMM) has been proposed as a probabilistic model

for the aggregate signal [5], [6], [7], [8]. The key idea of

fHMM is that each load contained in the aggregate power

signal is modeled by one hidden Markov model (HMM) and

the aggregate power signal is the sum of the individual power

signals of all loads.

Recently, we proposed a novel combination of HMM with

deep neural network (DNN) for load disaggregation [9]. Its

basic difference to and its major advantage over fHMM are that

not all loads need to be modeled by an HMM (impossible in

practice). Instead, our DNN-HMM approach needs only HMM

models for the major power loads to be extracted from the

aggregate power signal. The remaining loads are considered as

noise components and are suppressed by the denoising DNN.

Although fHMM and in particular DNN-HMM showed

quite promising results for load disaggregation, there is no

investigation yet which loads can be modeled efficiently by

HMM. A number of questions remain open: a) Is HMM a

suitable model for variable loads? b) Is HMM always a good

model for multi-state loads? c) Are the HMM states identical

to the load states? d) How to choose the number of HMM

states? e) How to adapt a learned HMM model to another

similar but not identical load, e.g. in another house [10]?

In this paper, we do not study the disaggregation problem.

Instead we go back to the roots and address the above basic

questions for the HMM modeling of load signals, supported

by experiments on the UK-DALE dataset [11]

II. HiddenMarkovModel

A. Basics

An HMM consists of a hidden Markov chain of states

s(1), . . . , s(N) of length N and a corresponding sequence

of observations vectors x(1), . . . , x(N). Modelling loads with

HMM, the observation could consist of two-dimensional real

and reactive power measurements. In this paper, we consider

real power measurement x(n) ∈ R only. s(n) ∈ {1, . . . ,M} is the

state at discrete time n and can take M different state values.

We assume a first-order Markov chain which is characterized

by the initial state probabilities

πi = P(s(1) = i), 1 ≤ i ≤ M, π = [π1, . . . , πM]T ∈ RM (1)

and the time-invariant state transition probabilities

ai j = P(s(n) = i|s(n − 1) = j), 1 ≤ i, j ≤ M (2)

A = [ai j] ∈ R
M×M (3)

with
∑M

i=1 ai j = 1 ∀1 ≤ j ≤ M. The continuous-valued

observation x(n) ∈ R is assumed to have the time-invariant

state-conditional probability density function (pdf)

ρi(x(n)) = p(x(n)|s(n) = i), 1 ≤ i ≤ M. (4)

In this paper, we assume a Gaussian pdf ρi(x(n)) ∼ N(µi, σ
2
i
).

Let S = {s(1), . . . , s(N)} and X = {x(1), . . . , x(N)} denote

the state and observation sequence, respectively. Let θ =

{π,A, {µi, σi}} be the vector containing all HMM parameters.

Then the joint pdf of X and S is [12]

p(X, S |θ) = πs(1)ρs(1)(x(1))

N∏

n=2

as(n)s(n−1)ρs(n)(x(n)). (5)

Due to the hidden (missing) states S , the expectation-

maximization (EM) algorithm is used to learn the model

parameters θ from several independent training samples Xk

θ̂ = arg max
θ

∏

k

p(Xk|θ). (6)



For HMM, the EM algorithm is better known as the Baum-

Welch algorithm consisting of a forward and backward re-

cursion. During inference, the underlying state sequence S is

estimated from a given observation sequence X by using the

learned HMM model θ̂:

Ŝ = arg max
S

p(X, S |θ̂). (7)

B. HMM states vs. load states

Note that the states and state transitions of an HMM model

are not necessarily identical to the states and state transitions of

a load. The formers are mathematical states and the latters are

physical states. Their relationship depends on the type of the

load, its transient phase of the power signal and the sampling

frequency of the power measurement. In the simplest case, if

an M-state load has M perfectly constant power consumption

levels with sharp transitions, then the HMM model has exactly

M states corresponding to the M power consumption levels. If,

however, the load has non-zero transient phase during a load

state transition, the power signal x(n) can take more than M

different values due to the transient phase of the power signal.

The higher the sampling frequency is, the stronger this effect

will be. In general, the number of HMM states is always lower

bounded by the number of load states.

On the other hand, if one reduces the sampling frequency,

or equivalently, if one collects one short block of length B > 1

of power measurements x(n) = [x(n), . . . , x(n− B+ 1)]T as the

observation vector of an HMM state, then such a data block

can contain constant power consumptions or different power

transient phases. In this case, an HMM state can correspond

to a load state with constant power consumption or load

state transition. For a variable load with a continuously time-

varying power consumption, it is even more hard or impossible

to identify load states and HMM states. Hence, the model

selection, i.e the choice of a suitable number of HMM states

for a given load and a given sampling frequency, plays an

important role.

III. Model selection

A. AIC criterion

We use the Akaike information criterion (AIC) to evaluate

how well an HMM fits to a specific load and to select the

number of HMM states M. Given the training sequence X, the

aim is to first estimate the best M-state model parameters θ̂
M

from X and then calculate the AIC criterion to be minimized

AIC(M) = −2LM + 2NM , LM = lnp(X|θ̂
M

) (8)

LM is the log-likelihood of θ̂
M

for the given observation X. The

second penalty term with NM being the number of estimates

parameters is used to avoid order overestimation. The value

of M which minimized AIC(M) is the AIC estimate for the

number of HMM states.

B. Controlled and uncontrolled multi-state loads

It is easy to imagine that an HMM is a poor model for

a variable load like a computer because such a load does not

have a finite number of power consumption levels. In this case,

a model selection will be difficult because AIC(M) does not

show a clear minimum. On the other side, an HMM is even

not always a good model for multi-state loads. We distinguish

between two types of multi-state loads, the controlled and

the uncontrolled ones. The controlled multi-state loads are

controlled by a circuit and run different fixed programs. This

implies that some state transitions occur more frequently than

others. As a result, some elements of the transition matrix

A are large and the remaining ones are close to zero. One

example is a dishwasher that typically runs the program

heating "h", washing "w" and pumping "p".

Fig. 1a shows the load state transitions of such a dishwasher.

This diagram reflects actually the washing program. Fig. 1b

shows the corresponding HMM state transitions. Since HMM

models the state sequence of a time series, most of the time

the HMM state will remain unchanged. This is the reason

for the additional "keep in state" self-transitions in Fig. 1b in

comparison to Fig. 1a.

o� h w
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Fig. 1a. Load state transitions

off h w
1 2 3 4

Fig. 1b. HMM state transitions

A controlled multi-state load has a structured transition

matrix A because some elements of A are always zero. For

the dishwasher in Fig. 1b,

A =





a11 0 0 a14

a21 a22 0 0

0 a32 a33 a34

0 0 a43 a44





, ai j , 0, (9)

when we enumerate the four load states "off", "h", "w", "p"

as s(n) = 1, 2, 3, 4. If this kind of a priori information (e.g.

washing programs, microwave programs) is available, it can

be used to constrain some elements of A to zero. This will

reduce the number of parameters to be learned and improve

the HMM learning and the inference.

In comparison, uncontrolled multi-state loads do not run

fixed programs and the state transitions underly random user

behavior. In this case, all or most of the elements of the

transition matrix A are non-zero but small. An example is a

lighting circuit with a number of independent on/off lights. The

overall lighting circuit is a multi-state load but with random

state transitions and random duration at a particular power



consumption state. This in turn favors different HMM states

with different HMM state transition probabilities with the same

observation x(n). In other words, AIC(M) will mostly decrease

for increasing M and make the model selection difficult for the

uncontrolled multi-state loads.

IV. Model adaptation

Model adaptation is necessary if a learned HMM for a par-

ticular load shall be applied across different houses. Assume an

HMM with parameter θ̂
1

has been learned from the observation

sequence X1 from the distribution q1(X) in house one and shall

be applied to infer the state sequence from the observation

sequence X2 with the distribution q2(X) of house two.

We assume that both loads in house one and two have the

same set of states but differ in q1(X) and q2(X) because some

states show different power consumptions µ1
i
, µ2

i
(e.g two

fridges with different compressors) and/or different length of

the physical states N1
i
, N2

i
(e.g. good/bad insulated fridge

with short/long cooling periods) that effects state transition

probabilities of the HMM. Therefore, the model of house one

will not be accurate enough for a similar load in house two.

Fig. 2 shows an example of a load with three states from

two different houses. We assume loads with constant power

consumption in each physical state. We further assume that the

signal is periodic. So, we only have to consider one period of

the signal to determine the HMM parameters. Each physical

state i has a fixed length of Nk
i

samples and an amplitude µk
i
,

where k = 1, 2 is the index of the house and i = 1, 2, 3 are

the states. With these assumptions the transition matrix of the

HMM has a special form

ak
ii = Pk(s(n) = i|s(n − 1) = i) =

Nk
i
− 1

Nk
i

, 1 ≤ i ≤ M (10)

ak
i j = Pk(s(n) = i|s(n − 1) = j) (11)

= Pk(s(n) = i|l j(n)) Pk(s(n) , j|s(n − 1) = j)
︸                          ︷︷                          ︸

1−ak
j j

, i , j,

where the short notation l j(n) = (s(n) , j) ∩ (s(n − 1) = j)

means that the load leaves state j at time n. Pk(s(n) = i|l j(n)) =
|{n: (s(n)=i)∩(s(n−1)= j)}|

|{n: (s(n), j)∩(s(n−1)= j)}|
denotes the probability of entering state i

(, j) conditioned on leaving state j at time n. We propose

leave state

House 1 House 2

µ1
1
µ1

2
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N1
1

N1
2
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1
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Fig. 2. Two state sequences of a load from different houses

a supervised adaptation method using a short piece X̄2 of

sequence X2 from g2(X). The basic motivation of model

adaptation instead of learning a new HMM model θ̂ from

X2 is the dramatic reduction of training data and training

time. To adapt the HMM, the parameter vector θ̂
1

undergoes

a parametric transform

θ̂
2
= f (θ̂

1
, α), (12)

resulting in a new parameter vector θ̂
2
to fit the new distribution

q2(X). f (·) is parametrized by α ∈ RNa , where Na is the

number of adaptation parameters to be estimated. Na should be

chosen small to allow model adaptation with a short adaptation

training sequence X̄2.

Adaptation to different power consumption levels is easily

done by

µ2
i = αiµ

1
i , 1 ≤ i ≤ M, (13)

where µk
i

is the mean power consumption of state i for house

k = 1, 2. Note that Eq.13 models a general state-specific

power adaptation. Hence, M scaling parameters α1, . . . , αM

are required. In the special case of uniform state-independent

power adaptation, only one scaling parameter αi = α is needed.

In contrast, the variances σ2
i

of x(n) at state i are caused by

noise and are assumed to be constant across different houses.

Therefore, σ2
i

is kept constant.

Under the assumption of periodicity, changing the length of

the physical states N1
i
→ N2

i
= ciN

1
i

transforms A1 → A2 in a

special way. Due to the changed length of state i, aii changes

according to

a2
ii =

N2
i
− 1

N2
i

=
ciN

1
i
− 1

ci(N
1
i
− 1)

︸       ︷︷       ︸

λi

a1
ii, 1 ≤ i ≤ M. (14)

Hence the diagonal elements of A are scaled by λi. Since a

scaling of the state length does not affect Pk(s(n) = i|l j(n)),

a1
i j = P2(s(n) = i|l j(n))(1 − a2

j j) (15)

= P1(s(n) = i|l j(n))(1 − a2
j j)

1 − a2
j j

1 − a1
j j

(16)

=
1 − λia

1
11

1 − a1
ii

, i , j, (17)

i.e. also the adaptation of the off-diagonal elements of A are

parametrized by λi, 1 ≤ i ≤ M. So the adaptation parameter

vector α = [α1, . . . αMλ1, . . . , λM]T contains Nα = 2M parame-

ters to be adjusted. The initial state probabilities are assumed

to remain the same π
2
= π

1
and are not adapted.

In order to find the optimal α, p(X̄2| f (θ̂
1
, α)) is computed

using the forward algorithm and numerically maximized over

α using the conjugate gradient (CG) algorithm. This leads to

the optimum adaption parameters α̂. Performance of the adap-

tion is evaluated by comparing the log-likelihoods log p(X2|θ̂1)

and log p(X2| f (θ̂
1
, α̂)) before and after adaptation.

V. Experiments

A. The dataset

We used the UK-DALE dataset [11] to evaluate the HMM

modeling of load signals. HMM models of eight different loads

are learned from 16h data of real power measurements. The

loads can are divided into three categories: controlled multi-

state loads, uncontrolled multi-state loads and variable loads,

see Table I.



controlled uncontrolled variable
multi-state multi-state loads

loads loads

washing machine fridge PC
dishwasher lighting ciruit amplifier
microwave

toaster
TABLE I

Loads selected for experiments

B. Results

Fig. 3 shows the AIC for all loads. In case of variable loads

and uncontrolled multi-state loads, AIC(M) keeps decreasing

for growing M. Therefore, HMM seems to be not a good

model for those loads because it is difficult to find a number

of states. On the other hand, HMM is suited for controlled

multi-state loads because they can be modelled with only few

states.

First we validate the model adaptation with simulated sig-

nals X1 and X2 of the same form in Fig. 2. The parameters are

µ1
i
= 0, 1, 2 and N1

i
= 5, 10, 20 for i = 1, 2, 3 in case of X1 and

µ2
i
= 0, 1.2, 2.3 and N2

i
= 8, 20, 22 in case of X2. We trained

an HMM on ten periods of X1 and used one period of X2 for

adaptation. Tab. II compares the true parameters µ2
i

and a2
ii

to

the estimated parameters µ̂2
i

and â2
ii

after adaptation. We see

that the means µ2
i

and the diagonal elements a2
ii

of A2 could

be adapted correctly.

µ2
1

µ2
2

µ2
3

a2
11

a2
22

a2
33

true 0 1.2 2.3 0.875 0.95 0.955
estimated 0 1.19 2.3 0.875 0.94 0.97

µ1
1

µ1
2

µ1
3

a1
11

a1
22

a1
33

orig. 0 1 2 0.8 0.9 0.95
TABLE II

Adapted state means and transition probabilities for simulated signals

For three real loads the results of model adaptation are given

in Table III. For each load we use an HMM with 5 states. For

adaptation we used 1.6h of training data from house 2. The

HMM models learned from house 1 can not be shared by house

2 without model adaptation. This can be seen from Table III

which compares the log-likelihoods of 3 cases: house 1, data

from house 2 by using the HMM model from house 1, data

from house 2 by using an adapted HMM model to house 2. A

large log-likelihood value indicates a good model fitting and

a small value a poor HMM model.

load lnp(X1|θ̂1) lnp(X2 |θ̂1) lnp(X2| f (θ̂1, α))

fridge 3311 1430 3005
dishwasher 2881 -1614 2453

washing machine 7100 2369 3375
TABLE III

Log-likelihood of HMM models without and with model adaptation

We observe that adaptation is best for the fridge and worst

for the washing machine. Comparing the signals of the three

loads we noticed that the signals of the fridge and dishwasher

from house 1 and 2 differ in amplitude and duration, but seem

to have the same states. Because they are periodic, adaptation

2 4 6 8 1� 12 14

N����� �� 	
�
�	 �

�0�

�0

�04

�06

�08

10�

�
�
�m
�
��
�
�
�
�
��

d�������� 

�����w! "�#��w�

"�# o��$�

to��t� 

2 % & ' () 12 (%

*+,-./ 23 5797.5 :

);)

);<

);%

);&

);'

(;)

=
>
?@
A
BC
D
E
F
G
HI

lJKLMJOK PJQPcJM

fQJRKS

2 T U V WX 12 WT

YZ[\]^ _` abeb]a g

XhX

Xhi

XhT

XhU

XhV

WhX

j
k
np
q
rs
u
v
x
y
z{

|}~������

��

Fig. 3. AIC for loads of different categories

can be performed easily. In case of the washing machine, the

signals look different and we are even not sure whether the

loads share the same states or not. Therefore, it is reasonable

that the performance of adaptation is worst in this case.

VI. Conclusions

We investigated how power consumption signals can be

efficiently modeled by HMM. We showed that HMM is a

suitable model for controlled multi-state loads, but degrades

for uncontrolled multi-state and variable loads. Finally, we

presented a method for model adaptation between different

houses which uses only very little data.
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