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Abstract— This is the first study combining deep learning 

with sparse coding (dictionary learning) to solve the energy 

disaggregation problem. In the first layer, we learn a 

disaggregating dictionary. In subsequent layers, we learn 

sparsifying dictionaries. The first layer is learnt from the smart-

meter data; subsequent layers are learnt from features obtained 

from the previous layer. For disaggregation, instead of using a 

single level of dictionary as the basis for each device, we use the 

multiple level dictionaries. Experimental results show that by 

going deeper, it is possible to improve disaggregation accuracy.   

Keywords— Energy Disaggregation, Dictionary Learning, 

Deep Learning,  

I.  INTRODUCTION  

The approach towards energy disaggregation is broadly 

based on the nature of the targeted household and commercial 

appliances. These appliances can be broadly categorised as 

simple two-state (on/off) appliances such as electrical 

toasters and irons; more complex multistate appliances like 

refrigerators and washing machines; and continuously 

varying appliances such as IT loads (printers, modems, 

laptops etc.). The earliest techniques were based on using real 

and reactive power measured by residential smart meters. The 

appliances’ power consumption patterns were modelled as 

finite state machines [1]. These techniques were successful 

for disaggregating simple two state and multistate appliances, 

but they performed poorly in the case of time-varying 

appliances which do not show a marked step increase in the 

power. More recent techniques, based on stochastic finite 

state machines (Hidden Markov Models) [2], have improved 

upon the prior approach. In a pioneering work [3], the 

problem was addressed using dictionary learning. The 

advantage of dictionary learning is that it does not require the 

simplifying assumptions that are required by prior 

techniques; as long as there is enough data, dictionary 

learning will be able to model the appliance, at least in theory. 

Later studies like [4] proposed variations of the basic 

framework proposed in [6] to solve the disaggregation 

problem.  

In the past decade or so, there have been a renewed 

interest in deep neural networks. While the basic architecture 

for such machine learning tools were known a priori, practical 

versions of these arrived only around 2005. With the advent 

of graphical processing units in everyday computers and 

heuristics tricks like greedy learning [5], deep neural 

networks became a implementable approach. Today deep 

learning is used by all large research corporations as the de 

facto tool for data analysis.  

Around the same time (i.e. 2006) dictionary learning was 

popularised only by the advent of K-SVD [6]; even though 

the basic concept was known from much before [7]. 

Dictionary learning is very popular in academic circle; it has 

been used to solve problems arising in vision, speech, 

imaging, reconstruction etc.  

Both deep learning and dictionary learning fall under the 

broader purview of representation learning. However, so far, 

dictionary learning have been a shallow approach. Also, there 

have been no study to assimilate the two into a single 

framework. For the first time in this work, we recast 

dictionary learning in a neural network framework. This 

automatically allows us to extend the dictionary learning 

framework into deeper architectures.  

It must be noted that our work is not related to hierarchical 

/ structured dictionary learning techniques [8-10]; although 

the title of [10] carries the terms ‘deep’, ‘sparse’ and ‘coding’ 

– it is basically a hierarchical approach; not a deep one. 

Hierarchical learning is a shallow (single level) learning 

technique, where a single level of dictionary is learnt, but the 

dictionary atoms maintain a hierarchical structure. It is 

similar to ‘learning’ a wavelet like decomposition for ‘tree-

structured’ sparsity on any piecewise smooth signal.   

In this work we discuss the similarity between neural 

networks and dictionary learning. We build on that to learn a 

deeper architecture. Each level is then trained with a greedy 

approach. The deeply trained model is used for 

disaggregation. In our approach, the first level is trained by 

disaggregating sparse coding [4], while the subsequent layers 

is a trained by simple sparse coding. Results show 

improvement going from 1st to 2nd layer, but saturates in the 

2nd layer; there is no improvement in results with the 3rd layer.  

II. DICTIONARY LEARNING AND NEURAL NETS 

 
Figure 1. Single Representation Layer Neural Network 

 

In
p

u
t

Ta
rg

et

Representation

mailto:shikhas@iiitd.ac.in
mailto:manoj@iiitd.ac.in
mailto:angshul@iiitd.ac.in


The relationship between dictionary learning and neural 

network has been independently proposed in a recent 

unpublished work [11]. The idea followed here is the same. 

A simple neural network with one representation (hidden) 

layer consists of two networks (Figure 1) – one between the 

input and the hidden layer and the other between the hidden 

layer and the target; the problem is to learn the network 

weights. Learning the weights between the representation and 

the target is straightforward. The challenge is to learn the 

network weights (from input) and the representation. This is 

the study of representation learning. 

Restricted Boltzmann Machine (RBM) is one technique 

to learn the representation layer. Broadly speaking, RBM 

learning is based upon maximizing the similarity between the 

projection of the data and the representation, subject to the 

usual constraints of probability. Multiple layers of RBM are 

stacked (loosely speaking) to form a DBN. 

RBM has a probabilistic formulation. The other prevalent 

technique to train the representation layer of a neural network 

is by autoencoder.  
2

, '
min ' ( )

FW W
X W WX     (1) 

The cost function for the autoencoder is expressed above. W 

is the encoder, and W’ is the decoder. The autoencoder learns 

the encoder and decoder weights such that the reconstruction 

error is minimized. Essentially it learns the weights so that 

the representation ( )WX retains all the information of the 

data, so that it can be reconstructed back. Once the 

autoencoder is learnt, the decoder portion of the autoencoder 

is removed and the target is attached after the representation 

layer. Multiple units of such autoencoders are nested inside 

the other to form SAE. 

 
Figure 2. Dictionary Learning 

 

The interpretation for dictionary learning is different. It 

learns a basis (D) for representing the data (X). The columns 

of D are called ‘atoms’. In this work, we look at dictionary 

learning in a different manner. Instead of interpreting the 

columns as atoms, we can think of them as connections 

between the input and the representation layer; see Figure 3. 

 
Figure 3. Neural Network type Interpretation 

 

Unlike a neural network which is directed from the input 

to the representation, the dictionary learning kind of network 

points in the other direction – from representation to the 

input. Dictionary learning employs an Euclidean cost 

function (2), given by 
2

,
min

FD Z
X DZ      (2) 

This is easily solved using alternating minimization. In 

every iteration, the first step is to update the coefficients 

assuming D is fixed and the next step is to update the 

dictionary assuming the coefficients are fixed. This 

alternating update of dictionary and coefficients continue till 

the algorithm converges to some local minima. Today most 

studies (following K-SVD [6]) impose an additional sparsity 

constraint on the representation (Z).   

III. PROPOSED APPROACH  

A. Deep Architecture 

We have established the connection between dictionary 

learning and neural network kind of representation learning. 

Building on that, we propose deeper architecture with 

dictionary learning. An example of two layer architecture is 

shown in Figure 4. 

 
Figure 4. Deep Dictionary Learning 

 

For the first layer, a dictionary is learnt to represent the 

input data. In the second layer, the representation from the 

first layer acts as input; it learns a second dictionary to 

represent the features / representation from first level. This 

concept can be extended to deeper layers. In this work we 

follow a greedy paradigm [5] for our deep dictionary learning 

problem. 

B. Discriminating Layer 

Disaggregating Discriminative Sparse Coding (DDSC) 

[3] is a complex technique. Given the limitations of sparse, 

we cannot describe it in detail. We just explain the final 

formulation.  
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there are N such devices. The subscript denotes 1st layer of 

dictionary learning.  

The dictionaries D(i)’s and coefficients Z(i)’s are learnt by 

the initial sparse coding (SC) step: 

( ) ( )

2
( ) ( ) ( ) ( )

1,
min

i i

i i i i

FD Z
X D Z Z     (4) 

In (3) ( )

1

iD ’s are discriminatively optimized bases such 

that it can produce activations ( )

1

iZ ’s which are as close as 

possible to the activations that can produce minimum 

disaggregation error. Activations that can produce minimum 

disaggregation error is obtained by, 

1

2

1 1 1 1
min

FZ
X D Z Z      (5) 

The activation functions cannot be negative, so in each 

iterations a non-negativity constrained on applied on the Z 

(all values less than zero are imputed to zero).  

C. Deeper Layers 

The first layer gives us a disaggregating basis that yields 

discriminative representation. Since we are learning the 

layers in a greedy fashion, there is no feedback from a 

subsequent layer to a previous layer. Therefore the 

discrimination happens only in the first layer. In subsequent 

layers, we want to learn basis for more abstract representation 

for each appliance.  

Given the representation from the first layer, we learn the 

second layer using simple sparse coding, i.e. by solving, 

( ) ( )
2 2

2
( ) ( ) ( ) ( )

1 2 2 2 1
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i i
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FD Z

Z D Z Z     (6) 

This can be solved using alternating minimization. There are 

theoretical guarantees behind convergence of this algorithm 

[13]. In order to prevent a degenerate solution where D is very 

large and Z is very small, the columns of D are normalized 

after every iteration.  

The same procedure can be continued for deeper layers. 

One can take the representation from the previous layer as the 

input and learn a basis and a deeper level of representation 

from it. However, as seen in deep learning, one cannot keep 

on going deeper and expect better and better results. Deeper 

layers mean more parameters to train, given the limited 

amount of data, the issue of over-fitting arises. This leads to 

saturation of results after a few layers and starts degrading if 

one goes deeper.  

D. Disaggregation 

For the disaggregation phase, the total (aggregate) power 

read by the meter is assumed to be a sum of the power 

consumed by individual devices. This is expressed as: 
(1)

( ) (1) ( )
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Z
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where (i) ( ) ( ) ( )

1 2 3 ...i i iD D D D , i.e. the basis for representing 

each appliance is the combined deep basis.  

The idea is the same as [3], but instead of having a single 

layer of learnt basis, we have multiple layers. The sparse 

representation is learnt by solving the l1-norm minimization 

problem. 
2

1
min

FZ
X DZ Z      (8) 

where (1) ( ) (1) ( )[ | ... | ] and Z [ | ... | ]N T N T TD D D Z Z  . 

Once the loading coefficients are estimated, the 

consumption for each appliance is obtained by: 

  
X̂

i
= D

i
Z

i
,  i =1...N     (9) 

IV. EXPERIMENTAL RESULTS 

We conduct this experiment on a subset of Dataport 

dataset available in NILMTK (non-intrusive load monitoring 

toolkit) format, which contains 1 minute circuit level and 

building level electricity data from 240 houses.  The data set 

contains per minute readings from 18 different appliances: air 

conditioner, kitchen appliances, electric vehicle, and electric 

hot tub heater, electric water heating appliance, dish washer, 

spin dryer, freezer, furnace, microwave, oven, electric pool 

heater, refrigerator, sockets, electric stove, waste disposal 

unit, security alarm and washer dryer. We are assigning 165 

homes for training and 72 for testing. The remaining 3 homes 

do not have aggregated data so they are not used in the 

experiments.  

To prepare training and testing data, aggregated and sub-

metered data are averaged over a time period of 10 minutes. 

This is the usual protocol to carry out experiments on the 

Pecan street dataset. Each training sample contains power 

consumed by a particular device in one day while each testing 

sample contains total power consumed in one day in 

particular house. The evaluation metric has also been defined 

in the previous work as ‘disaggregation accuracy’. 

  
where t denotes time instant and n denotes a device; the 2 

factor in the denominator is to discount the fact that the 

absolute value will “double count” errors.  

 

Table. 1. Energy Disaggregation Accuracy (in %) 
 

H.No. 

Sparse Coding 

(SC) 

1st Layer 

(DDSC) 

2nd Layer 

(SC) 

3rd Layer 

(SC) 

1.  94.92 94.04 95.69 95.64 

2.  64.75 68.50 71.34 71.65 

3.  83.60 83.31 84.92 84.91 

4.  43.67 47.68 51.33 51.01 

5.  63.21 66.05 68.81 68.78 

6.  43.23 51.24 56.66 56.53 

7.  58.89 64.81 70.31 70.33 

8.  51.41 57.32 59.81 60.10 

9.  58.39 62.10 65.40 65.38 

10.  62.96 64.85 66.00 66.43 

11.  50.37 57.65 62.20 62.26 

12.  58.13 64.09 64.78 64.98 

13.  51.97 56.25 58.32 58.03 

14.  78.26 79.03 78.81 78.83 

15.  64.06 65.84 64.11 64.34 

16.  68.09 77.23 82.83 82.83 

17.  63.34 75.38 78.71 79.24 

18.  67.29 72.44 71.40 71.77 
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19.  69.05 82.63 87.84 87.88 

20.  91.86 92.76 94.67 94.72 

21.  48.50 56.16 61.79 61.55 

22.  51.27 55.55 57.92 57.88 

23.  69.00 76.82 78.28 79.04 

24.  85.10 88.75 90.63 90.61 

25.  59.04 58.05 57.93 57.88 

26.  91.20 90.57 92.25 92.22 

27.  69.48 70.16 74.37 74.48 

28.  82.27 82.21 83.55 83.59 

29.  65.07 70.76 74.08 74.48 

30.  50.99 61.53 66.37 65.96 

31.  55.60 61.08 62.47 62.63 

32.  47.91 56.49 60.77 60.94 

33.  50.87 54.80 61.41 61.41 

34.  74.76 76.74 77.42 77.43 

35.  60.88 64.60 66.46 67.11 

36.  54.36 59.09 63.07 63.51 

37.  56.55 54.72 53.33 54.10 

38.  62.08 66.38 69.34 69.46 

39.  83.42 85.32 86.96 86.97 

40.  52.68 57.62 56.40 56.65 

41.  86.15 87.18 88.50 88.49 

42.  87.06 89.93 89.15 89.14 

43.  77.27 78.07 77.64 77.86 

44.  56.66 59.36 62.25 62.06 

45.  57.49 61.46 67.18 67.55 

46.  58.38 62.68 62.27 62.58 

47.  47.76 52.99 54.11 53.80 

48.  80.05 84.03 88.13 88.09 

49.  78.36 86.52 87.32 87.29 

50.  49.82 49.83 50.89 51.29 

51.  48.71 51.85 51.50 51.24 

52.  45.77 47.40 52.37 52.20 

53.  78.53 77.88 79.42 79.41 

54.  52.31 49.58 52.05 52.09 

55.  40.52 50.97 52.50 52.89 

56.  53.69 63.37 64.39 64.68 

57.  66.31 69.59 72.58 73.09 

58.  70.41 76.71 77.25 77.58 

59.  75.50 76.18 79.13 78.96 

60.  53.59 59.77 59.46 59.57 

61.  47.13 50.19 52.29 51.98 

62.  52.54 55.48 55.90 56.24 

63.  53.27 57.96 59.17 59.32 

64.  74.97 81.65 83.15 83.56 

65.  50.99 54.26 55.02 54.70 

66.  46.88 52.89 57.02 57.26 

67.  58.14 63.68 64.41 64.33 

68.  73.87 81.74 82.61 82.95 

69.  57.67 57.83 59.13 59.25 

70.  79.91 83.64 84.88 85.45 

71.  47.82 54.06 56.12 56.32 

72.  79.47 82.37 85.87 86.11 

Total 63.13 67.25 69.34 69.45 

 

The detailed experimental results are shown in Table 1. 

The sparse coding technique refers to the simple solution 

proposed in [4] (4); where dictionaries for sparsely coding 

each device are learnt. DDSC is the final approach proposed 

in [4] (3); it learns dictionaries to generate discriminative 

sparse coefficients. We use the DDSC as the first layer. In 

subsequent layers (2 and 3) we use sparse coding. The first 

level (both for DDSC – column 2 and SC – column 1) uses 

300 dictionary atoms. The second level uses 70 atoms and the 

third level uses 30 atoms. These number of atoms were 

decided on a smaller validation set (REDD).  

DDSC improves upon SC by about 4 percent. We see that 

going deeper, we can improve the results by another 2 

percent. 

V. CONCLUSION 

In this study we represent dictionary learning / sparse 

coding and deep learning in a common framework of neural 

network type representation. This allows us to propose a new 

area called ‘deep sparse coding’ – we learn multiple layers of 

dictionaries to sparsely encode the data. We follow the greedy 

paradigm for training. 

This work specifically studies the problem of energy 

disaggregation. So far, shallow (single layer) dictionary 

learning techniques were being used for addressing the 

problem. We take the time-tested DDSC method (3) to learn 

the first layer of dictionaries. In the subsequent layers, we use 

simple sparse coding. Going deeper, allows us to improve 

upon the DDSC technique by about 2% in terms of 

disaggregation accuracy.   
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