
Greedy Deep Disaggregating Sparse Coding

Shikha Singh
IIIT Delhi

shikhas@iiitd.ac.in

Manoj Gulati
IIIT Delhi

manoj@iiitd.ac.in

Angshul Majumdar
IIIT Delhi

angshul@iiitd.ac.in

Abstract— This is the first study combining deep learning

with sparse coding (dictionary learning) to solve the energy

disaggregation problem. In the first layer, we learn a

disaggregating dictionary. In subsequent layers, we learn

sparsifying dictionaries. The first layer is learnt from the smart-

meter data; subsequent layers are learnt from features obtained

from the previous layer. For disaggregation, instead of using a

single level of dictionary as the basis for each device, we use the

multiple level dictionaries. Experimental results show that by

going deeper, it is possible to improve disaggregation accuracy.

Keywords— Energy Disaggregation, Dictionary Learning,

Deep Learning,

I. INTRODUCTION

The approach towards energy disaggregation is broadly

based on the nature of the targeted household and commercial

appliances. These appliances can be broadly categorised as

simple two-state (on/off) appliances such as electrical

toasters and irons; more complex multistate appliances like

refrigerators and washing machines; and continuously

varying appliances such as IT loads (printers, modems,

laptops etc.). The earliest techniques were based on using real

and reactive power measured by residential smart meters. The

appliances’ power consumption patterns were modelled as

finite state machines [1]. These techniques were successful

for disaggregating simple two state and multistate appliances,

but they performed poorly in the case of time-varying

appliances which do not show a marked step increase in the

power. More recent techniques, based on stochastic finite

state machines (Hidden Markov Models) [2], have improved

upon the prior approach. In a pioneering work [3], the

problem was addressed using dictionary learning. The

advantage of dictionary learning is that it does not require the

simplifying assumptions that are required by prior

techniques; as long as there is enough data, dictionary

learning will be able to model the appliance, at least in theory.

Later studies like [4] proposed variations of the basic

framework proposed in [6] to solve the disaggregation

problem.

In the past decade or so, there have been a renewed

interest in deep neural networks. While the basic architecture

for such machine learning tools were known a priori, practical

versions of these arrived only around 2005. With the advent

of graphical processing units in everyday computers and

heuristics tricks like greedy learning [5], deep neural

networks became a implementable approach. Today deep

learning is used by all large research corporations as the de

facto tool for data analysis.

Around the same time (i.e. 2006) dictionary learning was

popularised only by the advent of K-SVD [6]; even though

the basic concept was known from much before [7].

Dictionary learning is very popular in academic circle; it has

been used to solve problems arising in vision, speech,

imaging, reconstruction etc.

Both deep learning and dictionary learning fall under the

broader purview of representation learning. However, so far,

dictionary learning have been a shallow approach. Also, there

have been no study to assimilate the two into a single

framework. For the first time in this work, we recast

dictionary learning in a neural network framework. This

automatically allows us to extend the dictionary learning

framework into deeper architectures.

It must be noted that our work is not related to hierarchical

/ structured dictionary learning techniques [8-10]; although

the title of [10] carries the terms ‘deep’, ‘sparse’ and ‘coding’

– it is basically a hierarchical approach; not a deep one.

Hierarchical learning is a shallow (single level) learning

technique, where a single level of dictionary is learnt, but the

dictionary atoms maintain a hierarchical structure. It is

similar to ‘learning’ a wavelet like decomposition for ‘tree-

structured’ sparsity on any piecewise smooth signal.

In this work we discuss the similarity between neural

networks and dictionary learning. We build on that to learn a

deeper architecture. Each level is then trained with a greedy

approach. The deeply trained model is used for

disaggregation. In our approach, the first level is trained by

disaggregating sparse coding [4], while the subsequent layers

is a trained by simple sparse coding. Results show

improvement going from 1st to 2nd layer, but saturates in the

2nd layer; there is no improvement in results with the 3rd layer.

II. DICTIONARY LEARNING AND NEURAL NETS

Figure 1. Single Representation Layer Neural Network

In
p

u
t

Ta
rg

et

Representation

mailto:shikhas@iiitd.ac.in
mailto:manoj@iiitd.ac.in
mailto:angshul@iiitd.ac.in

The relationship between dictionary learning and neural

network has been independently proposed in a recent

unpublished work [11]. The idea followed here is the same.

A simple neural network with one representation (hidden)

layer consists of two networks (Figure 1) – one between the

input and the hidden layer and the other between the hidden

layer and the target; the problem is to learn the network

weights. Learning the weights between the representation and

the target is straightforward. The challenge is to learn the

network weights (from input) and the representation. This is

the study of representation learning.

Restricted Boltzmann Machine (RBM) is one technique

to learn the representation layer. Broadly speaking, RBM

learning is based upon maximizing the similarity between the

projection of the data and the representation, subject to the

usual constraints of probability. Multiple layers of RBM are

stacked (loosely speaking) to form a DBN.

RBM has a probabilistic formulation. The other prevalent

technique to train the representation layer of a neural network

is by autoencoder.
2

, '
min ' ()

FW W
X W WX (1)

The cost function for the autoencoder is expressed above. W

is the encoder, and W’ is the decoder. The autoencoder learns

the encoder and decoder weights such that the reconstruction

error is minimized. Essentially it learns the weights so that

the representation ()WX retains all the information of the

data, so that it can be reconstructed back. Once the

autoencoder is learnt, the decoder portion of the autoencoder

is removed and the target is attached after the representation

layer. Multiple units of such autoencoders are nested inside

the other to form SAE.

Figure 2. Dictionary Learning

The interpretation for dictionary learning is different. It

learns a basis (D) for representing the data (X). The columns

of D are called ‘atoms’. In this work, we look at dictionary

learning in a different manner. Instead of interpreting the

columns as atoms, we can think of them as connections

between the input and the representation layer; see Figure 3.

Figure 3. Neural Network type Interpretation

Unlike a neural network which is directed from the input

to the representation, the dictionary learning kind of network

points in the other direction – from representation to the

input. Dictionary learning employs an Euclidean cost

function (2), given by
2

,
min

FD Z
X DZ (2)

This is easily solved using alternating minimization. In

every iteration, the first step is to update the coefficients

assuming D is fixed and the next step is to update the

dictionary assuming the coefficients are fixed. This

alternating update of dictionary and coefficients continue till

the algorithm converges to some local minima. Today most

studies (following K-SVD [6]) impose an additional sparsity

constraint on the representation (Z).

III. PROPOSED APPROACH

A. Deep Architecture

We have established the connection between dictionary

learning and neural network kind of representation learning.

Building on that, we propose deeper architecture with

dictionary learning. An example of two layer architecture is

shown in Figure 4.

Figure 4. Deep Dictionary Learning

For the first layer, a dictionary is learnt to represent the

input data. In the second layer, the representation from the

first layer acts as input; it learns a second dictionary to

represent the features / representation from first level. This

concept can be extended to deeper layers. In this work we

follow a greedy paradigm [5] for our deep dictionary learning

problem.

B. Discriminating Layer

Disaggregating Discriminative Sparse Coding (DDSC)

[3] is a complex technique. Given the limitations of sparse,

we cannot describe it in detail. We just explain the final

formulation.

() ()
1 1

2
() () ()

1 1 1
' ,Z '

1

2(1:)

1 1 10

min (Z

. .Z arg min

i i

N
i i i

FD s s
i

i N

FZ

X D Z

s t X D Z Z











 

  


 (3)

Here
()i

i

X X is the aggregated signal,

(1) ()

1 1 1| ... |
T

T N TZ Z Z    (first level of coefficients),

(1) ()| ... |
T

T N TZ Z Z    and (1) ()

1 1 1| ... | ND D D    (first level

of dictionaries). The superscript (i) denotes the ith device;

…
=

x D z

x D z

.

.

.

there are N such devices. The subscript denotes 1st layer of

dictionary learning.

The dictionaries D(i)’s and coefficients Z(i)’s are learnt by

the initial sparse coding (SC) step:

() ()

2
() () () ()

1,
min

i i

i i i i

FD Z
X D Z Z  (4)

In (3) ()

1

iD ’s are discriminatively optimized bases such

that it can produce activations ()

1

iZ ’s which are as close as

possible to the activations that can produce minimum

disaggregation error. Activations that can produce minimum

disaggregation error is obtained by,

1

2

1 1 1 1
min

FZ
X D Z Z  (5)

The activation functions cannot be negative, so in each

iterations a non-negativity constrained on applied on the Z

(all values less than zero are imputed to zero).

C. Deeper Layers

The first layer gives us a disaggregating basis that yields

discriminative representation. Since we are learning the

layers in a greedy fashion, there is no feedback from a

subsequent layer to a previous layer. Therefore the

discrimination happens only in the first layer. In subsequent

layers, we want to learn basis for more abstract representation

for each appliance.

Given the representation from the first layer, we learn the

second layer using simple sparse coding, i.e. by solving,

() ()
2 2

2
() () () ()

1 2 2 2 1
min

i i

i i i i

FD Z

Z D Z Z  (6)

This can be solved using alternating minimization. There are

theoretical guarantees behind convergence of this algorithm

[13]. In order to prevent a degenerate solution where D is very

large and Z is very small, the columns of D are normalized

after every iteration.

The same procedure can be continued for deeper layers.

One can take the representation from the previous layer as the

input and learn a basis and a deeper level of representation

from it. However, as seen in deep learning, one cannot keep

on going deeper and expect better and better results. Deeper

layers mean more parameters to train, given the limited

amount of data, the issue of over-fitting arises. This leads to

saturation of results after a few layers and starts degrading if

one goes deeper.

D. Disaggregation

For the disaggregation phase, the total (aggregate) power

read by the meter is assumed to be a sum of the power

consumed by individual devices. This is expressed as:
(1)

() (1) ()

()

[| ... |] ...i N

i N

Z

X X D D

Z

 
 

   
 
 

 (7)

where (i) () () ()

1 2 3 ...i i iD D D D , i.e. the basis for representing

each appliance is the combined deep basis.

The idea is the same as [3], but instead of having a single

layer of learnt basis, we have multiple layers. The sparse

representation is learnt by solving the l1-norm minimization

problem.
2

1
min

FZ
X DZ Z  (8)

where (1) () (1) ()[| ... |] and Z [| ... |]N T N T TD D D Z Z  .

Once the loading coefficients are estimated, the

consumption for each appliance is obtained by:

X̂

i
= D

i
Z

i
, i =1...N (9)

IV. EXPERIMENTAL RESULTS

We conduct this experiment on a subset of Dataport

dataset available in NILMTK (non-intrusive load monitoring

toolkit) format, which contains 1 minute circuit level and

building level electricity data from 240 houses. The data set

contains per minute readings from 18 different appliances: air

conditioner, kitchen appliances, electric vehicle, and electric

hot tub heater, electric water heating appliance, dish washer,

spin dryer, freezer, furnace, microwave, oven, electric pool

heater, refrigerator, sockets, electric stove, waste disposal

unit, security alarm and washer dryer. We are assigning 165

homes for training and 72 for testing. The remaining 3 homes

do not have aggregated data so they are not used in the

experiments.

To prepare training and testing data, aggregated and sub-

metered data are averaged over a time period of 10 minutes.

This is the usual protocol to carry out experiments on the

Pecan street dataset. Each training sample contains power

consumed by a particular device in one day while each testing

sample contains total power consumed in one day in

particular house. The evaluation metric has also been defined

in the previous work as ‘disaggregation accuracy’.

where t denotes time instant and n denotes a device; the 2

factor in the denominator is to discount the fact that the

absolute value will “double count” errors.

Table. 1. Energy Disaggregation Accuracy (in %)

H.No.

Sparse Coding

(SC)

1st Layer

(DDSC)

2nd Layer

(SC)

3rd Layer

(SC)

1. 94.92 94.04 95.69 95.64

2. 64.75 68.50 71.34 71.65

3. 83.60 83.31 84.92 84.91

4. 43.67 47.68 51.33 51.01

5. 63.21 66.05 68.81 68.78

6. 43.23 51.24 56.66 56.53

7. 58.89 64.81 70.31 70.33

8. 51.41 57.32 59.81 60.10

9. 58.39 62.10 65.40 65.38

10. 62.96 64.85 66.00 66.43

11. 50.37 57.65 62.20 62.26

12. 58.13 64.09 64.78 64.98

13. 51.97 56.25 58.32 58.03

14. 78.26 79.03 78.81 78.83

15. 64.06 65.84 64.11 64.34

16. 68.09 77.23 82.83 82.83

17. 63.34 75.38 78.71 79.24

18. 67.29 72.44 71.40 71.77

Acc = 1-

ŷ
t

(i) - y
t

(i)

n

å
t

å

2 y
t

t

å

19. 69.05 82.63 87.84 87.88

20. 91.86 92.76 94.67 94.72

21. 48.50 56.16 61.79 61.55

22. 51.27 55.55 57.92 57.88

23. 69.00 76.82 78.28 79.04

24. 85.10 88.75 90.63 90.61

25. 59.04 58.05 57.93 57.88

26. 91.20 90.57 92.25 92.22

27. 69.48 70.16 74.37 74.48

28. 82.27 82.21 83.55 83.59

29. 65.07 70.76 74.08 74.48

30. 50.99 61.53 66.37 65.96

31. 55.60 61.08 62.47 62.63

32. 47.91 56.49 60.77 60.94

33. 50.87 54.80 61.41 61.41

34. 74.76 76.74 77.42 77.43

35. 60.88 64.60 66.46 67.11

36. 54.36 59.09 63.07 63.51

37. 56.55 54.72 53.33 54.10

38. 62.08 66.38 69.34 69.46

39. 83.42 85.32 86.96 86.97

40. 52.68 57.62 56.40 56.65

41. 86.15 87.18 88.50 88.49

42. 87.06 89.93 89.15 89.14

43. 77.27 78.07 77.64 77.86

44. 56.66 59.36 62.25 62.06

45. 57.49 61.46 67.18 67.55

46. 58.38 62.68 62.27 62.58

47. 47.76 52.99 54.11 53.80

48. 80.05 84.03 88.13 88.09

49. 78.36 86.52 87.32 87.29

50. 49.82 49.83 50.89 51.29

51. 48.71 51.85 51.50 51.24

52. 45.77 47.40 52.37 52.20

53. 78.53 77.88 79.42 79.41

54. 52.31 49.58 52.05 52.09

55. 40.52 50.97 52.50 52.89

56. 53.69 63.37 64.39 64.68

57. 66.31 69.59 72.58 73.09

58. 70.41 76.71 77.25 77.58

59. 75.50 76.18 79.13 78.96

60. 53.59 59.77 59.46 59.57

61. 47.13 50.19 52.29 51.98

62. 52.54 55.48 55.90 56.24

63. 53.27 57.96 59.17 59.32

64. 74.97 81.65 83.15 83.56

65. 50.99 54.26 55.02 54.70

66. 46.88 52.89 57.02 57.26

67. 58.14 63.68 64.41 64.33

68. 73.87 81.74 82.61 82.95

69. 57.67 57.83 59.13 59.25

70. 79.91 83.64 84.88 85.45

71. 47.82 54.06 56.12 56.32

72. 79.47 82.37 85.87 86.11

Total 63.13 67.25 69.34 69.45

The detailed experimental results are shown in Table 1.

The sparse coding technique refers to the simple solution

proposed in [4] (4); where dictionaries for sparsely coding

each device are learnt. DDSC is the final approach proposed

in [4] (3); it learns dictionaries to generate discriminative

sparse coefficients. We use the DDSC as the first layer. In

subsequent layers (2 and 3) we use sparse coding. The first

level (both for DDSC – column 2 and SC – column 1) uses

300 dictionary atoms. The second level uses 70 atoms and the

third level uses 30 atoms. These number of atoms were

decided on a smaller validation set (REDD).

DDSC improves upon SC by about 4 percent. We see that

going deeper, we can improve the results by another 2

percent.

V. CONCLUSION

In this study we represent dictionary learning / sparse

coding and deep learning in a common framework of neural

network type representation. This allows us to propose a new

area called ‘deep sparse coding’ – we learn multiple layers of

dictionaries to sparsely encode the data. We follow the greedy

paradigm for training.

This work specifically studies the problem of energy

disaggregation. So far, shallow (single layer) dictionary

learning techniques were being used for addressing the

problem. We take the time-tested DDSC method (3) to learn

the first layer of dictionaries. In the subsequent layers, we use

simple sparse coding. Going deeper, allows us to improve

upon the DDSC technique by about 2% in terms of

disaggregation accuracy.

VI. ACKNOWLEDGEMENT

Authors acknowledge the support provided by ITRA

project, funded by DEITy, Government of India, under grant

with Ref. No. ITRA/15(57)/Mobile/HumanSense/01.

REFERENCES

[1] H. G. Wells, “Nonintrusive appliance load monitoring”, Proceedings
of the IEEE, Vol. 80, pp. 1870-1891, 1992.

[2] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, "Unsupervised
Disaggregation of Low Frequency Power Measurements," in SIAM
Conference on Data Mining, pp. 747-758, 2011.

[3] Z. Kolter, S. Batra, and A. Y. Ng., "Energy Disaggregation via
Discriminative Sparse Coding," NIPS, 2011.

[4] E. Elhamifar and S. Sastry, "Energy Disaggregation via Learning
'Powerlets' and Sparse Coding", AAAI 2015.

[5] Y. Bengio, “Learning deep architectures for AI”, Foundations and
Trends in Machine Learning, Vol. 1(2), pp. 1-127, 2009.

[6] M. Aharon, M. Elad and A. Bruckstein, "K-SVD: An Algorithm for
Designing Overcomplete Dictionaries for Sparse Representation",
IEEE Transactions on Signal Processing, Vol. 54 (11), pp. 4311-4322,
2006.

[7] K. Engan, S. Aase, and J. Hakon-Husoy, “Method of optimal directions
for frame design,” IEEE ICASSP, 1999.

[8] Y. Suo, M. Dao, U. Srinivas, V. Monga, T. D. Tran, “Structured
Dictionary Learning for Classification”, arXiv:1406.1943

[9] L. Bar and G. Sapiro, “Hierarchical dictionary learning for invariant
classification”, IEEE ICASSP, pp. 3578 – 3581, 2010.

[10] H. Dong, B. Wang, C.-T. Lu, “Deep Sparse Coding Based Recursive
Disaggregation Model for Water Conservation”, IJCAI, 2013.

[11] S. Tariyal, A. Majumdar, R. Singh, M. Vatsa, “Greedy Deep Dictionary
Learning”, arXiv:1602.00203.

[12] I. Daubechies, M. Defrise, C. De Mol, "An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint",
Communications on Pure and Applied Mathematics, Vol. 57: 1413-
1457, 2004.

[13] A. Agarwal, A. Anandkumar, P. Jain and P. Netrapalli, “Learning
Sparsely Used Overcomplete Dictionaries via Alternating
Minimization”, COLT, 2014.

