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Abstract—The first step to saving energy in the home is
often to create an energy breakdown: the amount of energy
used by each individual appliance in the home. Unfortunately,
current techniques that produce an energy breakdown are not
scalable: they require hardware to be installed in each and every
home. In this paper, we propose a more scalable solution called
Gemello that estimates the energy breakdown for one home by
matching it with similar homes for which the breakdown is
already known. This matching requires only the monthly energy
bill and household characteristics such as square footage of the
home and the size of the household. We evaluate this approach
using 57 homes and results indicate that the accuracy of Gemello
is comparable to or better than existing techniques that use
sensing infrastructure in each home. The information required
by Gemello is often publicly available and, as such, it can be
immediately applied to many homes around the world.

I. INTRODUCTION

Buildings account for more than 30% of total energy usage
around the world, of which up to 93% is due to residential
buildings [6]. Some of this energy can be saved by producing
an energy breakdown: the amount of energy used by each
individual appliance in the home, akin to the itemised bills
we get from grocery stores. With such a breakdown, utility
companies can focus conservation programs on homes that
have an especially inefficient appliance, such as a fridge, or
air conditioner. Energy feedback can also help induce energy-
saving behaviour in the occupants themselves [5].

Unfortunately, current techniques that produce an energy
breakdown are not scalable: they require hardware to be
installed in each home and/or intensive manual training of
the system. Non-intrusive load monitoring (NILM) tries to
infer the energy breakdown based on the aggregate power
trace from a single smart meter installed in the home. This
approach is perhaps the most practical because smart meters
are already being rolled out in millions of homes worldwide.
However, current techniques often require high resolution data
(1 minute sampling frequency or higher) [3]], [9] while most
smart meters today only support 15-minute or hourly sample
rates to support time-of-use energy pricing. Even if smart
meters had a higher sampling rate, most of the world does
not yet have smart meters and many places do not even have
plans to deploy them. Alternatives to NILM are more accurate
but require specialized sensors to be installed inside the home.
These solutions are limited by the need for instrumentation to
be deployed in every home.

In this paper, we propose a more scalable solution called
Gemello that produces an energy breakdown in homes without
requiring new hardware to be installed in each home. Instead,
Gemello estimates the energy breakdown for a home by
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matching it with similar homes that do have a hardware-
based disaggregation solution. This matching requires only
the monthly energy bill and household characteristics such
as square footage of the home and the size of the household.
From an energy perspective, homes in the same geographic
region are often very similar because they have similar con-
struction methods, use the same heating fuels, and contain sim-
ilar fridges, washing machines, and other appliances. Gemello
exploits this fact to provide an energy breakdown for many
homes in a region by instrumenting only a fraction of them.

Of course, no two homes are exactly identical and finding a
perfect twin is unlikely. Gemello uses a different set of match-
ing homes to estimate the energy usage of each individual
appliance. The key is the ability to define ‘similarity’ on a
per-appliance basis. For example, homes with similar seasonal
trends in their monthly energy bill are expected to have similar
heating/cooling energy (referred as heating, ventilation, and
air conditioning [HVAC] from now on); homes with similar
square footage are expected to have similar lighting loads. The
energy usage of each appliance is predicted by a different set
of features, and so Gemello finds a different set of homes to
predict the energy usage of each appliance.

We evaluate this approach using 57 homes from the publicly
available Dataport data set [[8], in which the ground truth
energy breakdown is measured by metering each appliance
of the home individually for one year or more. Results show
that the accuracy of Gemello is comparable to or better than
established NILM techniques called FHMM and LBM, both
of which require on-site, high-frequency power metering in
each home [7], [10]. Gemello can achieve 76% and 69%
accuracy on HVAC and fridge, compared to 61% and 39% for
FHMM and 56% and 72% for LBM. Furthermore, it achieves
up to 57% accuracy on washing machine, dryer, dishwasher,
and lighting loads, which is higher than previously reported
results. Many existing techniques are not able to disaggregate
these loads at all. The accuracy of Gemello becomes higher in
homes with smart meters that provide power readings at 15-
minute resolution. Gemello has potential for immediate impact
because all of the information it requires is already available.

II. APPROACH
The goal of Gemello is to predict the energy consumption
of household appliances given easy to collect information such
as a single aggregate energy reading per month and static
household characteristics. The key intuition behind Gemello is
that if per appliance energy consumption is available for a
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Fig. 1. Overview of Gemello. A) We assume a small set of submetered homes for which we have access to appliance level energy consumption. Both

submetered homes and test homes have access to monthly energy and static household features; B) We extract features from the monthly and static household
characteristics for all homes to obtain the feature set (I) per home; C) For a given test home (shown in red), for which we want to predict the energy
consumption of a particular appliance, we choose the most similar homes (shown in green) for the test home. Similarity is defined on a per-appliance basis
on the feature set (I). Each appliance will have different set of features for defining similarity (like number of occupants for washing machine, household
area for lighting); D) We predict the appliance energy consumption of the test home as the average of the energy consumption of that appliance across the

neighbours chosen in the previous step.

Feature Feature Features (f) #f
category sub category
Raw monthly energy 12 month household energy aggregate 12
Monthly energy Derived monthly Variance over 12 month aggregate energy, Min. energy/Max. energy across 12 months, , Max. energy- 9
energy Min. energy across 12 months, (Max. energy - Min. energy)/Max. energy, Skew, Kurtosis
, 25" and 75" percentile of 12 months energy
Static household characteristics Household area, # occupants, # rooms 3

Time series
decomposition
15
min Usage patterns
AMI
data Step changes

Max. of seasonal and trend component, Energy of seasonal component across months of HVAC usage 14
, Top-7 Fourier transform coefficients of seasonal component

Autocorrelation (lag 1 day), Frac. of energy used across 24 hours, Frac. of energy used across 7 days 32

Proportion of step changes in 3 bins (<500 Watts, >500 and <1000 Watts; 6

>1000 Watts), Cluster centers of above 3 bins

TABLE I
THESE FEATURES ARE USED TO DEFINE SIMILARITY BETWEEN HOMES. GEMELLO PRIMARILY USES FEATURES OF THE MONTHLY ENERGY BILL AND
STATIC HOUSEHOLD CHARACTERISTICS. HOWEVER, IT CAN ALSO USE FEATURES OF 15-MINUTE AMI POWER DATA IF THE HOME HAS A SMART METER

home then any other home that is ‘similar’ in nature will also
have the same energy consumption for that appliance. This
intuition leads to the following requirements for Gemello:

1. Small set of submetered homes (S H) for which per appli-
ance energy consumption is directly measured.

2. Easy to collect information for all the homes in the universal
set U - This includes monthly energy consumption (" home
represented by a vector [EM;,, ..., EMj, 1) which is anyway
collected for billing purposes and static household information
such as size and number of occupants (represented by a vector
[Si,Sjss---D.

For each target home ¢ (¢ C U), we first derive the feature
set (as discussed later) using vectors [EM;, ,...,EM;,]
and [S;,,Si,,...]. Let these feature set be represented by
[Li,,1;,,...]. We next derive the K nearest neighbours for
the 7" home from amongst the submetered homes in SH by
comparing the feature set [I;,,I;,,...] with the feature sets
derived for the remaining homes SH. Let this set of ‘similar’
homes be [IV1, ..., Nig]. Monthly energy consumption for kth
appliance (Lj) for ith home is then calculated as:

Lk1+Lk2+"'+LkK
Ly, = -

where Ly, , ..., Ly, represent the monthly energy consump-
tion for the same kth appliance from K identified ‘neighbours’

which are already sub-metered (and hence this information is
directly measured). Figure [I] outlines Gemello.

We define ‘similarity’ differently for each electrical load.
For example, homes having ‘similar’ monthly energy con-
sumption are likely to have similar HVAC energy as the
monthly energy consumption in many countries is often dom-
inated by HVAC loads. Homes having ‘similar’ area are likely
to have ‘similar’ lighting fixtures and thus may consume
similar lighting energy. Homes having a ‘similar’ number of
occupants may have ‘similar’ dish washer energy usage, as
dishes loads is likely to be proportional to the number of
occupants. By defining ‘similarity’ differently for each load,
we leverage the fact that no two homes are exactly identical
in all respects, but that every home is likely to have a set
of similar homes that can be leveraged for predicting energy
consumption at the load level.

For an electrical utility that has no smart metering infras-
tructure or homes in their customer base that already have
appliance level monitors already installed, it can chose these
set of homes in a way that all the remaining (large number of)
homes are ‘similar’ to one or more of these neighbourhood
homes. Standard clustering techniques can be used on the
feature set derived from already available information, as is
used in Gemello for estimating K neighbours, to create cluster
of homes from their customer base and then a small set of
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31 12 21 32 26 16
TABLE II

# HOMES IN THE DATASET WITH GROUND TRUTH VALUES

homes can be selected from each cluster for installing sub-
metering infrastructure. We now discuss how 15-min. AMI
data can be leveraged in Gemello.

Since 15-minute AMI data is very rich compared to monthly
energy consumption, we divide the features derived from AMI
data into the following broad classes:

I: Seasonal and Trend - To derive these features, we first
decompose the 15-minute AMI data time series using Sea-
sonal Decomposition of Time Series by Loess (STL) [4] into
seasonal and a trend 15-minute timeseries. Features derived in
this class include max., energy and first 7 coefficients obtained
from the Fourier transform of the seasonal component.

IT: Temporal Patterns - Features derived in this class include
fraction of energy usage across the 7 days of the week, energy
usage across the 24 hours of the day and energy usage during
the night time. Such features can be used to derive energy
consumption of appliances showing temporal usage patterns.
For example, certain working class populations may do their
groceries and dishes on weekends and thus would have higher
fridge and dryer energy consumption on weekends.

III: Step changes - A step change is likely to be caused by an
appliance changing its state. For example, washing machine
turning ON could cause a step change of 500 Watts. We
compute the fraction of step changes whose magnitude are less
than 500 Watts, between 500 and 1000 Watts and greater than
1000 Watts. Step changes greater than 1000 Watts are caused
by high power appliances such as HVAC, while step changes
less than 500 Watts are caused by low power appliances.

The total set of features is summarised in Table [l Since
these features are on different scales, we normalise them in
the range O to 1 using standard scaling procedures.

ITII. EVALUATION

A. Data set and Baseline approaches

We use the publicly available Dataport data set [8]] for
evaluation. 57 homes contain data for 1 year (2013) across
6 appliances of interest (fridge, HVAC, lights, dryer, washing
machine and dish washer) and house metadata such as the
number of occupants, area of the home and number of rooms.
While the data set contains submetered data from a large
number of appliances, only the chosen 6 appliances had data
across significant number of homes. Not all of these 57 homes
monitored all these 6 appliances. Table [II| shows the number
of homes for each of these 6 appliance types.

We compare the accuracy of our approach against the
following two approaches: Factorial Hidden Markov Model
(FHMM) [7]] and Latent Bayesian Melding [[10].

B. Evaluation metric

We define our metric based on prior work [1]], [7]. Let the
predicted and ground truth appliance energy for an appliance
a in home h for month m be Pred(h,a, m) and GT'(h,a, m)
respectively. The absolute percentage error (PFE) for the
h,a,m triplet is given by:
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Fig. 2. Gemello achieves Energy Accuracy that is comparable to or better
than the baseline approaches across all appliances

_ |Pred(h,a,m) — GT(h,a, m)|

PE(h, a,m) GT(b, a,m)

x 100%

The percentage accuracy (PA) for h,a, m triplet is given by:
100 — PE(h,a,m), if PE(h,a,m) < 100
0, otherwise

PA(h,a,m) = {

The percentage accuracy (PA(h,a)) for an appliance a in
home h is given by the mean of PA(h,a,m) across all
months.

PA(h,a) = PA(h,a,m)

We now define our main metric Energy accuracy (%) for
an appliance a to be the mean of PA(h,a) across all homes.

Energy accuracy(a) = PA(h,a)

In our results, we also calculate the standard error to show the
variation in energy accuracy across homes. Higher ‘Energy
accuracy’ indicates better disaggregation performance.

C. Experimental setup

Our experimental setup tries to replicate the following real
world scenario- we have a small subset of submetered homes
and a large number of homes without smart meters. However,
our data set has the limitation that only a small number of
homes (Table containing aggregate and appliance energy
for long duration (1 year) and household characteristics is
available. Thus, we use the leave-one-out cross validation
technique to evaluate our approach, where we assume the
set of submetered homes to be all the homes except the test
home. Since we also want to tune the parameters of our
model, we do a nested cross-validation, where the inner loop of
cross validation is used for model tuning. We tune our model
on two parameters- the number of neighbours (K) and the
top-N features. We vary K from 1 to 6 and N from 1 to
max(number of features, 10). The top-N features are learnt
using the ExtraTreeRegressor using the default parameters
provided in the Scikit-learn implementation. We use data from
2013 for our evaluation. For all homes, we had aggregate and
appliance monthly energy consumption for the 12 months. For
the HVAC, the evaluation was done only on the months (May-
October) in which it is typically used in Texas.

To compare our performance with FHMM, we train an
FHMM on 15-minute appliance level data from all homes
across the dataset using nilmtk [[1]]. Each appliance is modelled
as a 3 state HMM, as is commonly done in the literature [1],
[10]. The FHMM is composed of an HMM for each home
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Fig. 3. Gemello achieves higher accuracy with monthly sampling frequency
than the state-of-the-art LBM algorithm achieves with 15-minute or even 2-
minute sampling frequency.

contains the 6 appliances of interest. It must be noted that the
result of FHMM disaggregation is a 15-minute power signal
for each appliance. We calculate the per month energy from
this power signal. To compare our performance with LBM,
we use the implementation provided by the paper authors.
The FHMM is trained on 15-minute appliance level data from
the dataset. Population statistics such as appliance number of
cycles, duration of usage are computed on the entire dataset.
The LBM paper authors confirmed that the parameters and
hyper-parameters we learnt were reasonable. Like FHMM,
LBM outputs a 15-minute power timeseries, from which we
calculate the monthly energy consumption per appliance.

D. Results and analysis

Our main result in Figure [2] shows that Gemello gives
comparable or better disaggregation performance across all
loads in comparison to the 2 baseline approaches. Gemello can
achieve 76% and 69% accuracy on HVAC and fridge, com-
pared to 61% and 39% for FHMM and 56% and 72% for
LBM. Furthermore, it achieves up to 57% accuracy on washing
machine, dryer, dishwasher, and lighting loads, which is higher
than previously reported results. Many existing techniques
are not able to disaggregate these loads at all. We discussed
the results of the benchmark algorithms with several energy
disaggregation researchers and found that there are several
reasons why the performance of FHMM and LBM is poor
in comparison to our approach, such as FHMM is known to
work poorly when the ‘unexplained’ energy is high.

We evaluated the performance of our approach in compari-
son to LBM in the case higher resolution data was available to
LBM. In Figure 3] we see that with an increase in resolution
from 15 to 2 minutes, the accuracy of LBM improves. How-
ever, our approach still performs comparable or better across
all appliances.

Having established that Gemello gives better or comparable
accuracy than state-of-the-art algorithms, we now analyse
the performance of Gemello if additional data such as 15-
minute AMI is also available. Figure [4] shows the perfor-
mance of Gemello across different feature sets. ‘All’ set of
features contains features from AMI data in addition to static
household and monthly features. For fridge, the AMI features
increase accuracy by 5%. On analysing the optimal set of
features selected during nested cross validation when fed AMI
features, we found that in 20/21 homes, proportion of step
changes that are less than 500 Watts was among the optimal
features. As we had hypothesised earlier, fridge is a duty
cycled appliance often consuming less than 500 Watts. Thus,
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Fig. 4. The performance of Gemello can be improved by up to 5% for some
appliances if 15-minute AMI data is available. The Oracle illustrates the upper
bound on accuracy that can be achieved with this data set if the neighbour
selection algorithm were perfect.

homes similar in proportion of step changes less than 500
Watts are similar in fridge consumption. We also found the
fraction of energy consumed in afternoon hours to be an
important feature as it occurs in 19/21 homes. Homes show
low electrical activity during afternoon hours, which is often
dominated by the always-on appliance fridge. Thus, fraction
of energy in afternoon hours is useful for finding homes with
similar fridge energy. To find the best possible performance of
Gemello on our dataset, we define the ‘Oracle’. The ‘Oracle’
finds the ‘optimal’ subset of ‘neighbourhood’ homes from
all possible sub sets of homes for each home for each load.
The appliance energy data from these ‘optimal’ homes is then
averaged to predict the appliance energy consumption for the
test home. Here, ‘optimality’ is defined as giving the best
energy breakdown accuracy. The substantially high accuracy
of the ‘Oracle’ only highlights the potential of Gemello . If
we were to find berter features for defining similarity between
homes, our accuracies would tend towards the accuracy of the
‘Oracle’. IV. CONCLUSIONS

A detailed energy breakdown is the first step towards saving
energy in a home. We started with the goal of creating an
energy breakdown solution that - works with whatever data is
easily accessible, is able to scale across large number of homes
and requires minimal capital expenditure involved. In order
to achieve these objectives, we completely flipped the way
we look at the problem. Rather than the existing bottom-up
approach of using modelling to identify electrical signatures,
we used the top-down approach of using modelling to identify
home level characteristics that correlate well with appliance
level energy consumption. We show that such home level
characteristics can be easily calculated with static household
information and monthly electricity data both of which are
readily available. Results show that our proposed approach that
satisfies the objectives we started off with, gives comparable
or better energy breakdown accuracy than the state-of-the-art
NILM techniques which rely on high resolution power con-
sumption data from smart meters. We believe that Gemello has
potential for immediate impact as all the information it re-
quires is already available.

V. NOTE
This work is an abridged version of the following report [2].
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