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Abstract—Over the past few years, dozens of new techniques have been
proposed for more accurate energy disaggregation, but the jury is still out
on whether these techniques can actually save energy and, if so, whether
higher accuracy translates into higher energy savings. In this paper,
we explore both of these questions. First, we develop new techniques
that use disaggregated power data to provide actionable feedback to
residential users. We evaluate these techniques using power traces from
240 homes and find that they can detect homes that need feedback with
as much as 84% accuracy. Second, we evaluate whether existing energy
disaggregation techniques provide power traces with sufficient fidelity
to support the feedback techniques that we created and whether more
accurate disaggregation results translate into more energy savings for
the users. Results show that feedback accuracy is very low even while
disaggregation accuracy is high. These results indicate a need to revisit
the metrics by which disaggregation is evaluated.

I. INTRODUCTION

Over the past years, new techniques have been proposed for more
accurate energy disaggregation, but the jury is still out on whether
these techniques can actually save energy and, if so, whether higher
accuracy translates into higher energy savings. In this paper, we
explore both of these questions. NILM research is broadly motivated
by the philosophy of Lord Kelvin: “If you can’t measure it, you
can’t improve it,” but is the opposite also true? Disaggregation
techniques can be used to help users identify the major energy
consumers in their home, and some users will pour over this data
to achieve significant energy savings [2]. However, several studies
have shown that just providing energy data does not necessarily
translate to long-term energy savings. After the novelty wears off,
users experience a rebound effect as unsustainable energy-saving
actions unwind themselves and as users tire of sifting through too
much data [1]. Other studies have shown more sustainable effects
by providing more targeted feedback or recommendations for simple
actions [5]. Can disaggregation techniques be used to generate the
types of actionable feedback that would produce sustainable energy
savings?

In this paper, we present the exploration of two research questions
that are highly relevant to the research community interested in
energy disaggregation. First, we explore whether disaggregated power
data can be used to provide actionable feedback to residential users,
and whether that feedback is likely to save energy. We focus on
feedback about refrigerators and HVAC. We develop a model that
breaks the power trace of a refrigerator into three parts: baseline
(when no one is using the fridge), defrost (energy consumption when
the fridge is in defrost mode) and usage (energy consumption due
to fridge usage). Then, we develop techniques to identify users with
1) much more energy due to fridge usage than the norm 2) much
more energy due to defrost than the norm, or 3) fridges that are
malfunctioning or misconfigured, even during baseline operation. We
evaluate our model using a dataset with power traces from 95 refrig-
erators. Results indicate that our model can break down fridge usage
into its three components with only 4% error. Additionally, the three

types of feedback could help users save up to 23%, 25% and 26%
of their fridge energy usage, respectively. These techniques provide
targeted feedback with specific actions, e.g. fix or repair the fridge,
and so we expect this energy savings to be sustainable. Similarly,
we develop new techniques to differentiate homes with and without
setback schedules on the HVAC system based on their HVAC power
traces and outdoor weather patterns. This information can be used
to give feedback to install a programmable thermostat. We evaluate
these techniques with power traces from 58 homes and results indicate
that our techniques can classify homes with 84% accuracy. Based on
these results, we conclude that disaggregation does indeed have the
potential to provide targeted, actionable feedback that could lead to
sustainable energy savings.

Second, we explore whether existing energy disaggregation tech-
niques provide power traces with sufficient fidelity to support the
feedback techniques that we created, and whether more accuracy
disaggregation results translate into more energy savings for the
users. To do this, we re-evaluate the feedback techniques above using
power traces produced by disaggregation algorithms instead of those
produced by direct submetering. We use three benchmark algorithms
provided in an open source toolkit called NILMTK [3]. The feedback
techniques that we developed become almost completely ineffective
when using the disaggregated energy traces. In some cases, they failed
to identify over 70% of the homes that should be getting feedback
and falsely flagged 14% homes of additional homes that should not
receive feedback.

To conclude, we discuss why feedback accuracy is low even while
disaggregation accuracy is high: accurate energy breakdown feedback
(i.e. “Your fridge accounts for 8% of your energy bill”) can be given
even if the power traces have many errors as long as those errors
average out over time. Our results indicate that the disaggregation
community needs to revisit the metrics by which it measures progress.
Part of this process will be to look through the lens of applications,
to find the aspects of power traces that are most important.

II. DATA SETS

We now describe the two data sets that we will be using throughout
the rest of this paper. We use the Dataport data set [7], the largest pub-
licly available dataset containing submetered and aggregate electricity
consumption. The first release of the data set contains minutely power
readings across different appliances from 240 homes in Austin, Texas
from January through July 2014. Since our fridge work predates the
latest release, we use the first release made available in NILMTK [3]
format consisting of data from 240 homes for fridge analysis.

The data set contains power data logged every minute for 172
fridges. Of these, we filtered out 77 fridges that had data collection
problems such as missing data and multiple appliances on the
same sensor. We use the remaining 95 fridges for evaluation of
our proposed techniques. We use the 58 homes having both the
temperature setpoint and power data information in our analysis.
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Fig. 1. Breakdown of fridge energy consumption

We also collected data from four identical fridges operated in
identical ambient conditions across four floors of our CS building.
We put Hobo loggers to collect power data at 1 Hz frequency from
these four fridges. For one of the fridge to which we had easy access
to, we collected door status for both doors and the freezer unit and
internal temperature data at 1 Hz frequency, in addition to the power
data. We collected data for two weeks.

III. APPLIANCE ENERGY MODELLING

The key idea behind the energy models is to extract features from
the power data which serve as the basis for the energy feedback
methods that we later describe in Section IV.
A. Fridge energy modelling

A fridge is a compressor based appliance where the motor duty
cycles to maintain the fridge at a set temperature. When the com-
pressor is ON, the refrigerant transfers heat from inside the fridge
to the outside. The compressor turns ON and OFF at a small offset
temperature above and below the set temperature. Since the fridge
is operated at a lower temperature than the surroundings, there is
always heat leakage from the outside into the inside of the fridge,
which is proportional to the temperature difference between the fridge
setpoint and ambient temperature. In the absence of fridge usage
(such as opening fridge door), the compressor typically duty cycles
at the same rate, shown as the baseline compressor usage in Figure
1 which occurs in the early morning hours of the shown fridge. Each
time the fridge is opened, the leakage from the ambient environment
increases and the compressor has to run longer to remove this extra
heat. The addition of items in the fridge also causes the compressor
to run longer due to the increased thermal mass. Both these factors
cause an increase in the duty percentage of the fridge. The increased
compressor ON and decreased compressor OFF durations are shown
as usage in Figure 1. For efficient running of the fridge, fridges
defrost periodically to get rid of frost developed on the cooling coil.
Defrosting is done via the defrost heater and introduces heat into the
system, which is removed in the next few compressor cycles having
higher duty percentage. These cycles can be seen in Figure 1.

Thus, the fridge energy consumption can be broken down into
three components: usage, defrost and baseline. We now describe
the procedure for breaking down fridge energy into these three
components:

1. Finding baseline duty percentage: Duty percentage of a fridge
cycle (c) is given by the ratio of the compressor ON duration to the
total fridge cycle. Or,

Duty percentage (c) = ON duration(c)
ON duration(c)+OFF duration(c)

Baseline duty percentage is found as the median of the duty
percentage during early morning hours (1 to 5 AM) over the duration
of the dataset. Using median overcomes the cases when a home may
have high fridge usage on some days.

2. Finding defrost energy: Defrost energy comprises of two parts:
energy consumption when the fridge is in the defrost state and the
extra energy consumed in the regular compressor cycles that follow
the defrost state. We assume that a defrost cycle causes an impact on

the next D compressor cycles. For these D cycles, the extra energy
consumed is found by the additional duty percentage over the baseline
of the compressor cycles following the defrost cycle as:

(1)

Extra compressor energy due to defrost

=

D∑
c=1

(Duty percentage (c) - Baseline duty percentage)

× (ON duration(c) + OFF duration(c))

× Fridge compressor power consumption

Energy consumption when fridge is in the defrost state can be
trivially calculated.

3. Finding usage energy: As a prerequisite to finding usage
energy, we need to first find usage cycles, which we define as fridge
cycles that are affected by fridge usage. After removing the defrost
cycles and the subsequent D cycles, we look for cycles having duty
percentage that is P% more than the baseline duty percentage. The
intuition behind choosing a parameter P is that fridges may show
some inherent variation in duty cycle percentage independent of
usage. We assume that this variation is within P% of the baseline
duty percentage. After finding these U usage cycles, the usage energy
can be calculated as: Usage energy

(2)
=

U∑
c=1

(Duty percentage (c) - Baseline duty percentage)

× (ON duration(c) + OFF duration(c))

× Fridge compressor power consumption

4. Finding baseline energy: All the cycles that are not affected
due to defrost or usage contribute towards baseline energy and their
energy consumption can be summed to find baseline energy.
1) Evaluation of fridge model

We now evaluate the accuracy of our fridge modelling approach.
We use our collected data from our CS building for this evaluation
as the Dataport data set does not have labels for fridge usage. Using
door sensor data, we manually annotated 3 days for usage cycles
from the fridge for which we had instrumented in our data set.
We found that the defrost cycle impacts the next 3 cycles, and
we thus chose D=3. It should be noted that choosing a slightly
different value of D is only going to change marginally the usage and
defrost energy numbers since defrost cycles are easily outnumbered
by regular cycles. The other parameter in our evaluation, percentage
threshold (P ) for labelling usage cycles is more important due to the
expected high number of usage cycles.

We now define three metrics to evaluate our fridge model:
1) % Usage energy error for fridge, which suggests how accurately

our model captures the energy usage when a fridge is being
actively used:
|Predicted fridge usage energy - Actual fridge usage energy|×100%

Actual fridge usage energy
2) Precision on fridge usage cycles:
|Correctly predicted fridge usage cycles|

# Predicted fridge usage cycles
3) Recall on fridge usage cycles:
|Correctly predicted fridge usage cycles|

# Total fridge usage cycles

Figure 2 shows the usage energy error, precision and recall on
usage cycles as they vary with P . At a P of 11-16%, the usage
energy error is less than 2%. Usage energy error remains below 4%
for P between 9 and 24, showing that the prediction remains useful
within a wide percentage threshold. A precision of 1 is not observed
until P = 17% due to the presence of a single fridge cycle having
a high duty percentage despite being unrelated to usage. This is due
to the fact that rare cycles may show an inherent deviation from
the regular duty percentage. At P = 11%, the recall drops from 1.
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Fig. 2. Our model for breaking fridge energy into usage, baseline and defrost
is accurate to within 4% energy error for a wide range of percentage threshold
above baseline duty percentage.

This is due to a usage cycle which shows less than 10% deviation
from baseline duty percentage. We can conclude that our model is
applicable even within a broad range of parameters.

B. HVAC energy modelling
By optimising the HVAC setpoint schedule, upto 30% of HVAC

energy can be saved [6]. Giving homes feedback on their setpoint
schedule is likely to have a big impact. Thus, we try to build an
HVAC model to predict setpoint temperature from HVAC energy data.
Since HVAC energy usage is highly dependent on external weather
conditions, we incorporate weather data into our HVAC model. While
we explain our model for the cooling season (summers, when HVAC
is used for cooling), it is equally applicable to the heating season.
Our model is based on the following assumptions:
1)HVAC energy is impacted by weather conditions such as wind
speed and temperature.
2)HVAC energy consumption is proportional to the difference in
external temperature and home setpoint temperature.
3)Programmable thermostats use the following four setpoint times:
night hours from 10 PM to 6 AM; morning hours from 6 AM to 8
AM; work hours from 8 AM to 6 PM; evening hours from 6 PM
to 10 PM. These times are as per the schedule times reported by
EnergyStar.gov.
3)HVAC energy during an hour is zero if the HVAC was not used
during this hour

Based on the first assumption, we have: HVAC energy ∝ humidity;
HVAC energy ∝ wind speed. Based on the second assumption, we
have HVAC energy ∝ (External temperature- internal temperature
setpoint). Based on the third assumption, we have four different
temperature setpoints during the day. We use four proportionality
constants (a1 through a4) corresponding to these four setpoint times,
describing how strongly the temperature delta between external and
setpoint temperature affects HVAC energy consumption. To convert
our HVAC model into a regression model, we add a binary variable
(is it nth hour) which is 1 if the data is from the nthhour and 0
otherwise. We also use a binary variable indicating if HVAC was used
during the nth hour based on the fourth assumption. Our non-linear
model has a total of 10 parameters: a1 through a6 and four setpoint
temperatures.

We now evaluate our HVAC model on its ability to learn the
temperature setpoints. We calculate hourly HVAC energy usage for
the 58 homes containing both HVAC power and setpoint information.
We download hourly weather data from Forecast.io web service and
use linear interpolation to fill missing readings, similar to earlier
work. Finally, we used non-linear least squares minimisation to
estimate the 10 parameters in our model. We also constrain learnt
setpoints to be within 60 and 90F. A key takeaway which we see
later in section IV-C is that these learnt parameters are useful in
providing feedback to homes for setpoint optimisation.

IV. ENERGY FEEDBACK METHODS

We now develop and demonstrate some examples of how NILM
could be used to provide feedback to users to reduce their energy
usage based on the appliance energy modelling we previously dis-
cussed. These are only examples, and the analysis presented later in
this paper would apply to any applications of NILM.
A. Fridge usage feedback

In this section, we target homes based on fridge usage, where
the potential feedback could be to reduce interactions with fridge,
increase temperature setpoint, etc. We use robust estimator of co-
variance based outlier detection to detect such homes. The outlier
detection method is applied on two dimensions: usage energy% and
proportion of usage cycles. We apply this outlier detection method
on the 95 homes from the Dataport data set. We divide this two
dimensional home data into four quadrants through the medians on
usage energy% and proportion of usage cycles. 13 outlier homes can
save upto 23% of their fridge energy usage.
B. Fridge defrost feedback

Our method for providing feedback based on defrost is similar
to the method of providing feedback based on usage. High defrost
energy could be indictive of a broken fridge seal. We use outlier
detection methods on two dimensions: defrost energy% and number
of defrost cycles per day and give feedback to the homes lying in
the first and the second quadrant. Number of defrost cycles per day
is more interpretable and relatable than proportion of defrost cycles
(which is going to be a very small floating point number). 17 homes
can save up to 25% of their fridge energy if they fix their fridge
defrost.
C. HVAC setpoint feedback

We use machine learning methods on the parameters learnt pre-
viously from the HVAC model, for finding homes needing HVAC
feedback. We calculate an HVAC efficiency score for the 58 homes
in the Dataport data set on a scale of 0 to 4 based on recommended
setpoint temperature from EnergyStar as follows: 1)Morning score
= 1 if morning setpoint temperature >78F, 0 otherwise; 2) Evening
score = 1 if evening setpoint temperature >78F, 0 otherwise; 3) Work
hours score = 1 if work hours setpoint >85 F, 0 if setpoint ≤ 78,
(85-setpoint)/7 otherwise; and 4) Night score = 1 if setpoint >82F,
0 if setpoint ≤ 78F, (82-setpoint)/4 otherwise. We decide that 34
homes that have an overall score of 2 or less can be given feedback
to optimise their HVAC setpoints. In addition to the 10 parameters
of the HVAC model, we add additional features such as total energy
used in work, morning, night and evening hours and the number of
minutes HVAC system was on during these times to our machine
learning methods We use 2-fold cross validation and a grid search
on the feature space to find that the feature <a1, a3, Energy in
evening hours, Mins HVAC usage in morning hours> used by
the Random Forest classifier give the optimal accuracy of 84.4%.

V. EVALUATION OF NILM FOR FEEDBACK

We now evaluate how accurately do current NILM approaches
match these feedback. We now describe the experimental setup for
evaluating NILM performance on the Dataport data set.
A. Experimental setup

We use NILMTK [3] to perform our NILM experiments. We
use the 3 reference implementations made available in NILMTK:
combinatorial optimisation (CO), factorial hidden Markov model
(FHMM) and Hart’s steady state algorithm. These 3 algorithms cover
both classes of disaggregation algorithms- CO and FHMM are non-
event based, while Hart’s algo is event based. While FHMM is a
recent development, Hart’s is the seminal work. We use the standard
definition of NILM metrics as made available in NILMTK [3]: %



Dataset Algorithm Fridge HVAC

RMSE Error F- RMSE Error F-
(W) Energy % score (W) Energy% score

REDD Additive
FHMM - 62.5 - - - -

REDD Difference
HMM 83 55 - - - -

Colden Bayesian
HMM 45

iAWE FHMM - 50 0.8 - 30 0.9
Data port CO? 85 19 0.65 600 15 0.87
Data port FHMM? 95 20 0.63 650 18 0.89
Data port Hart 82 21 0.72 890 23 0.76

TABLE I
BENCHMARK ALGORITHMS ON THE DATAPORT DATASET GIVE

COMPARABLE PERFORMANCE TO EXISTING LITERATURE.
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Fig. 3. NILM algorithms show poor accuracy in identifying homes which
need feedback for high fridge usage energy. Red dots indicate the homes
which should be getting feedback based on analysis of submetered fridge
data, while these algorithms would give feedback to all homes in the green
region outside the elliptical boundary.

Error in Energy, Root Mean Squared Error (RMSE) Power, and F-
score, to evaluate these NILM models.

We now present the results of NILM evaluation on the Dataport
data set. We also compare our results with the state of the art.
From Table 1, we can see that for both fridge and HVAC, the
benchmark algorithms we use are comparable in performance to
existing literature.
B. Fridge usage feedback

We now see how accurate fridge usage feedback we can provide
with the disaggregated power trace. Figure 3 shows that all three
NILM algorithms have poor accuracy in identifying homes that
need feedback for high fridge usage. False negatives (FN) are those
homes that should be getting feedback but are not getting, and false
positives (FP) are those homes that would wrongly get feedback. We
now explain the reasons for the poor accuracy of the used NILM
algorithms.

During the night hours when typically only background appliances
such as fridge are running, Hart’s algorithm has good disaggregation
accuracy. Due to this, Hart’s algorithm closely matches the baseline
duty percentage computed on submetered data. However, Hart’s
algorithm is susceptible to detection of false events and missing
true events, especially during active hours when appliances similar
in magnitude to the fridge may be operating. Thus, Hart’s algorithms
underpredicts and overpredicts fridge compressor cycle durations
during the day creating a deviation in fridge usage. The median
baseline duty percentage found by CO and FHMM are higher than
the median baseline duty percentage on submetered data. Owing to
higher baseline duty percentage, usage energy in these homes is
lower than submetered, thereby explaining the high false negative
rate. The reason behind CO and FHMM finding a high baseline duty
percentage is that the objective function in both these algorithms
includes minimising the difference between aggregate power and sum
of power for predicted appliances. To satisfy this objective, these
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Fig. 4. Classification of homes into those with setback schedules decreases
from 84% with submetered power traces to 53%, 69%, and 62% respectively
with power traces produced by the three NILM algorithms.

algorithms predict fridge to be ON longer than actual during the
night hours when typically few loads are used.
C. Fridge defrost feedback

We find that the our approach of breaking down fridge energy into
baseline, defrost and usage is unable to find even a single defrost
cycle when fed the disaggregated power data. This is due to the
inadequacy of the used NILM methods in effectively learning and
disaggregating the defrost state. CO and FHMM rely on KMeans
and Expectation Maximisation algorithms respectively for learning
the different states of an appliance. Due to defrost events being
rare in comparison to regular usage, these algorithms are not able
to accurately associate a cluster with the defrost state.
D. HVAC setpoint feedback

Figure 4 shows that the classification of homes into those with
setback schedules decreases significantly for all NILM algorithms.
We now explain the low classification accuracy based on the features
used by Random Forest classifier. Of the four features used, a1 and
a3 are hard to interpret, and thus we provide an explanation based on
Mins HVAC usage during morning hours. Most of the HVAC usage
in the data set occurs during the night hours. Thus, NILM accuracy
is likely to be highly dependent on night time HVAC disaggregation.
Since, only HVAC and fridge would be typically used in the night,
and, HVAC has a distinct much higher power signature than the
fridge, NILM accuracy for HVAC is decent (as per Table 1). However,
during the morning hours, when typically there is more activity in
the home, NILM accuracy for HVAC is expected to be lesser.

VI. CONCLUSIONS

In this paper, we show that disaggregated power data has the
potential to provide targeted, actionable energy feedback to homes.
However, we found that the state-of-the-art NILM accuracy isn’t
effective in enabling such feedback. We believe that the community
needs to revisit the metrics for gauging NILM performance, and our
work is a step in that direction. We finally conclude that- “If you can
measure it, you may not necessarily be able to improve it.”

VII. NOTE

This paper is an abridged version of a paper [4] that appeared in
Buildsys 2015.
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