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Abstract—In this paper a novel approach for energy disaggre-
gation is introduced that identifies additive sub-components of the
power signal in an unsupervised way from high-frequency mea-
surements of current. In a subsequent step, these sub-components
are combined to create appliance power traces. Once the sub-
components that constitute an appliance are identified, energy
disaggregation can be viewed as non-linear filtering of the current
signal. The approach introduced here tries to avoid numerous
pitfalls of existing energy disaggregation techniques such as
computational complexity issues, data transmission limitations
and prior knowledge of appliances. We test the approach on a
publicly available dataset and report an overall disaggregation
error of 0.07.

I. INTRODUCTION

Energy disaggregation, the problem of inferring the power
consumption of appliances given voltage and current readings
at a limited number of sensing points in a building, has
received increasing attention in recent years [7, 8]. Energy
disaggregation techniques based on latent variable models,
such as Factorial Hidden Markov Models (FHMM), have been
employed recently with some success [3, 5], and have quickly
become a popular approach to the problem. However, even
after considering a number of simplifying assumptions, exact
inference for FHMMs is intractable and approximate inference
techniques are still computationally expensive.

More recently, deep learning has been employed to the prob-
lem of energy disaggregation [4], after having made substantial
improvements in other fields such as computer vision, speech
recognition and machine translation. For a general introduction
to artificial neural networks and deep learning, see [6]. Energy
disaggregation approaches based on deep learning so far have
tried to directly infer the power consumption of individual
appliances given the aggregate signal. However, this type of
approaches may not generalize well given the difficulties of
characterizing the effects that any other appliance (beyond the
one of interest) may have on the aggregate signal.

The approach introduced here tries to overcome some of these
problems by, first, training a deep neural network to identify
subcomponents in the aggregate signal and by, then, combining
these subcomponents into appliances. Binary subcomponents

Mario Bergés
Department of Civil and Environmental Engineering
Carnegie Mellon University
Pittsburgh, USA
Email: marioberges@cmu.edu

are identified from high frequency current readings in an
unsupervised way by training a neural network whose ac-
tivation in the one but last layer is binary (0 or 1) and
linear in the output layer. The output of the binary node
denotes whether or not the corresponding subcomponent is
active. Inferring whether or not an appliance is active then
boils down to identifying the relations between subcomponents
and the state of the appliances. After training, inferring the
state of the appliances can be seen as applying a non-linear
filter to high frequency power readings. In section II the
method of identifying subcomponents of the aggregate signal
is explained. Section III shows how these subcomponents can
be used to infer whether or not appliances are turned on at
any given time. In section IV it is shown how the proposed
algorithm was applied to the BLUED dataset whereas section
V concludes the work and proposes future work.

II. SUBCOMPONENT IDENTIFICATION

As explained earlier, binary subcomponents are identified
using a deep neural network. For this, the stream of measured
current readings is sliced according to zero-crossings detected
in the voltage signal. This results in a matrix I € R€*7 with T
being the number detected cycles and C' the number of samples
within one cycle (i.e. 200 for a sampling rate of 12kHz and
a line frequency of 60Hz). Let i(t) with ¢ € [0,T] be the
current measured within cycle ¢ (i.e., the ¢-th column of I). A
seemingly trivial mapping is learned from one cycle of current
measurements to the active and reactive power consumed
within that cycle. Let the active and reactive power be P(t)
and Q(t), respectively. P(t) and Q(t) can be computed from
the current and voltage data so in a sense the function that the
network will learn is already known!. However, the topology
of the network is constrained in such a way that the network
has to piece the aggregate signal together using a limited
number of additive components. This is achieved by using
a linear activation in the output layer and a binary activation

IThough the voltage is not directly represented in I, the cycles in each
column of I are aligned with voltage zero-crossings.



Fig. 1. A graphical representation of the neural network used to identify
binary additive subcomponents. x; denote nodes with binary outputs. h;
denote hidden units. P and () denote units whose target is active and reactive
power respectively.

in the one but last layer. Figure 1 shows a graphical depiction
of such a network. Let x(t) € (0,1)" be the activation
of the binary layer given the input i(¢) with N being the
hyper-parameter that controls the number of inferred sub-
components, and w; € RY*2 be the weights connecting the
binary and output layer. Since the active power consumed by
an appliance cannot be negative, w; is constrained in such a
way that its first column must be greater or equal to 0. The
model can be trained in a fully unsupervised way: given a
cycle of current measurements i(t), the desired output, namely
active and reactive power can be computed from current and
voltage data and the network is then trained to reconstruct the
active and reactive power.

In order to minimize its training error, the network is forced
to activate some of its binary units and adjust the binary-linear
weights in such a way that it can capture most of the variability
of the aggregate signal.

The activations of the hidden units in layers lower than the
one but last are unconstrained. In principle any activation can
be used. In this work a leaky rectifying linear unit is employed
whose activation is: f.(z) = maxz(ax,z). The activation of
the binary units is defined as:

1 ifz>0
0 else

folx) =

The network is trained using stochastic gradient descent
which requires that the activation functions be differentiable.
In order to alleviate the problem of vanishing gradients,
activation functions are desired whose derivative is mostly
non-zero (wide working range), however the derivative of fj

is always 0 except for x = 0 where it is not defined. Thus,
the binary activation can be understood as

fo(z) = lim

a—oo | + e—a%

Let s(z) = (1 + e )7L Then the derivative of s(z)
asymptotically tends to O for lim, ,+., and the bigger a,
the faster s(x) becomes practically 0 for digital computing
purposes. In order to avoid vanishing gradients, the gradient

of fp(x) is set to % with a = 1.

III. COMBINING BINARY SUBCOMPONENTS INTO
APPLIANCES

Once the network is trained, it can be used to extract
a binary matrix from high frequency current readings. Let
this matrix be X € (0,1)7*" with N being the number
of components and 7' the number of current and voltage
cycles. The jth row of X denotes the hidden states of the
network x(j) given input i(j). We also assume knowledge of
a matrix containing ground truth of whether or not a specific
appliance is turned on or off at any given voltage cycle. Let
G € (0,1)T*4 denote this matrix with A being the number
of appliances. Note that this assumes that all appliances are
two-state appliances, i.e. they can either be on or off.

The additive subcomponents that the network identifies are not
unique if the observed signal does not contain all combinations
of appliance states. For example, imagine there are two devices
a1 and ap which consume 200W and 250W respectively.
Assume also that a; and as are never active at the same time.
The values that the aggregate signal can take are therefore 0W,
200W and 250W. A neural network with two binary units
has two choices to capture all the variability of the aggregate
signal: The weights connecting the binary and the output layer
can either be w; = [200W, 250W] or w; = [200W, 50W] 2.
Let g1 and g2 be boolean variables that denotes whether or
not a; and ao are active respectively. Also, let x1 and x5 be
the boolean variable representing the binary hidden layer of
the network. In case one, inferring g; from z; is trivial, since
g; = x;. In the second case however, a non-linear relation
between g; and x; holds: g1 = 1 A —x2 and go = 1 A Ts.
Following the intuition gained from this simple example, two
methods to combine the binary components into appliances
will be introduced.

A. Greedy Search

The first method that can be used to aggregate binary
subcomponents into a time series representing the activity
of appliances is based on a greedy search over boolean
functions. Let 2; € (0,1)7 be the boolean time series that
represents the ith binary component, i.e. the ith column of
X. Similarly, let g; € (0,1)7 represent the ith column of
G, i.e. the binary time series representing whether or not

2w; = [250W, —50W] is excluded because of the constraint indicating
that weights coming into the ’active power’-node have to be greater than 0



appliance i is turned on. Finally, let A denote the element-wise
boolean and-operator such that z; A z; € (0,1)7. A function
f(zj,...,x) is sought that maximizes the similarity between
g; and the output of that function on a subset of binary
components ;, ...x;. We furthermore assume that f is of the
type f(zj,...xx) = a;x; A ... A apxy With a; being able to
negate x;. As a similarity measure the F1 score is used.

A greedy algorithm that iteratively adds one component to
the function is used. The algorithm is initialized believing
that g; is always turned on, i.e. fo = (1)7. Then it iterates
over all x; and computes the F1 score that would result in
either appending Az; or A—z; to f. After one sweep the
component that resulted in a maximal increase in F1 score
is selected and appended to f. This is repeated until the F1
score cannot be improved further.

B. Logistic regression

The Greedy Search algorithm is only able to find a function
of a very simple type. Thus, a more general approach that
can model a binary response given predictors is desirable.
Logistic regression can be used to predict the probability of
binary probabilistic outcomes. We are interested in modeling
P(g;(t) = 1]z(t)). Using logistic regression to model this
distribution assumes that P(g;(t) = 1|z(¢)) is a Bernoulli
distribution with

Plgi(t) = 1]z(t)) .

1y explwl z(t)]

The model parameter w; can be obtained using a maximum
likelihood estimate.

C. Naive Energy Estimation

A naive approach to estimate the energy consumption of
individual appliances can be employed. The power in the off
and on state of each appliance is assumed to be constant and
known. Let p,, and p,rs be the power consumption of the
appliance and g its predicted binary activation vector. For the
predicted power trace then the following holds: p = pyn g +

Pofr(1—9).
IV. EXPERIMENTS

The performance of the proposed algorithm is tested on
Phase B of the BLUED dataset [1]. For this, zero-crossings
were detected in the voltage signal to detect cycles. The
number of data points within one cycle varies between 199 and
201 (12kHz sampling rate with a line frequency of ~ 60H z).
If a cycle contained less than 201 data points, the data was
zero-padded which resulted in a matrix I € RT*201 The
dataset was temporally randomized (the rows were shuffled)
and the min and max values of every column were extracted
and each column was normalized into a range of [—1,1].
The active and reactive power of every column was computed
using Budeanu’s definition of reactive power [2]. The real and
imaginary portions of the Fourier transform of every row were
computed and stored.

A 6-layer neural network was created using the python pack-
age keras®. Its topology was not optimized. The first 4 layers
have an output dimensionality of 170 and a leaky rectifying
linear activation (f(z) = maxz(0.5z,)). In order to enforce
stability, the weights of these layers are constrained such that
their norm cannot exceed 3. The 5th layer has an output
dimensionality of 100 and uses the binary activation described
earlier. Thus 100 binary subcomponents are identified. The
last layer corresponding to the active and reactive power has
a linear activation and an output dimensionality of 2 (active
and reactive power). The weights are constrained in such a
way that the bias must be 0 and the weights coming into the
node representing active power must be greater or equal to 0.
The network was trained to learn the mapping from the real
and imaginary parts of the Discrete Fourier Transform of the
current signal to active and reactive power using stochastic
gradient descent with 100.000 random data points at a time.
Since this step was completely unsupervised, the network was
trained on all the data.

After the network was trained, the last layer of the neural
network was removed and the network was used to infer the
binary activations. The ground truth data containing appliance-
level consumption was provided at 1Hz, whereas the binary
subcomponent activations are at a sampling rate of 60Hz,
therefore the binary subcomponents were downsampled to
1Hz. This was done by extracting the data from within one
second and taking the median (majority vote).

The matrix containing the power consumption of appliances
was binarized using simple thresholding. The data was then
temporally randomized and split into two parts, one for
training and one of testing (2-fold cross-validation). The mean
power consumption in the on and off states in the training
portion of the data was computed and naive energy estima-
tion was employed to infer power traces of the individual
appliances in the testing portion of the data. As a measure
of the performance of the energy disaggregation the mean
disaggregation error was used:

mde(p, p) = Z |Pi(t])9i—(t1;3i(t)|

A. Results

Table I shows the results on the individual appliances for
which ground truth data was available. The column “active”
shows the proportion at which the appliance is active. Since
the energy was estimated assuming 2-state appliances, mean
disaggregation error captures the variance of the appliance
to some degree. A perfect 2-state prediction of an appliance
with higher variance will always lead to a higher mean dis-
aggregation error, even though the energy in sliding windows
(or instantaneous power at a lower temporal resolution) would
be predicted perfectly. The lower bound for assuming 2-state
appliances and a perfect prediction is shown in the column
MDE(p).

Whether or not the algorithm can detect if an appliance is

3http://keras.io/



Appliance Active Greedy F1 Logit FI MDE(p) MDE(p)
A/V LR 60% 0.88 0.98 0.05 0.009
Computer 1 27.3% 0.80 0.95 0.12 0.042
Desk Lamp 21.4% 0.87 0.97 0.07 0.013
DVR 20.7% - 0.99 0.01 0.005
Socket LR > 0.1% 0.75 0.97 0.09 0.089
Garage Door 04 % - 0.89 0.07 0.063
Iron 0.1 % 0.72 0.95 0.12 0.115
Laptop 1 33.3% 0.76 0.90 0.39 0.272
LCD Monitor 16.2% 0.76 0.91 0.19 0.029
Monitor 2 17.3% 0.65 0.85 0.30 0.089
Printer 0.1% - 0.66 0.05 0.045
Tall Desk Lamp 21.4% 0.87 0.97 0.07 0.008
TV Basement 20.7% 0.92 0.99 0.05 0.029
Random 30% - 0 - -
Overall 0.07 0.037
TABLE I

“ACTIVE” DENOTES THE PROPORTION THE APPLIANCE WAS ACTIVE,
“GREEDY” AND “LOGITSHOW THE PERFORMANCE OF THE GREEDY
SEARCH AND LOGISTIC REGRESSION, “MDE(p)” AND “MDE(p)” SHOW
MEAN DISAGGREGATION ERROR OF THE INFERRED POWER TRACE
(LOGIT) AND THE LOWER BOUND ASSUMING 2-STATE APPLIANCES

turned on or off was measured using the F1 score (0 - worst,
1 - best). As expected combining binary subcomponents using
logistic regression outperforms the approach based on greedy
search. Using logistic regression, for 8 out of 13 appliances,
an F1 score greater than 0.95 was achieved, for 2 out of 13
appliances an F1 score between 0.90 and 0.95 was achieved
and for 2 appliances an F1 score between 0.85 and 0.90 was
achieved. Only one appliance scored lower than 0.85 (printer
with 0.66).

V. CONCLUSION

The Neural Energy Decoder has shown unprecedented re-
sults on the BLUED dataset. In order to infer the states and
to some degree the power consumption of appliance with
reasonable precision only a single cycle of high frequency
current data needs to be provided. No other energy disag-
gregation system is capable of doing this to the knowledge
of the authors. On top of that, once the model is trained
inference is computationally extremely cheap. The approach
can also circumvent data transmission limitation that high
frequency energy disaggregation approaches face: an energy
disaggregation system that requires a sampling frequency of
12kHz needs to collect and store at least 4GB of data per
sensing point per day. Such a system is unlikely to scale to
many buildings. The Neural Energy Decoder can alleviate this
problem by computing the state of the binary subcomponents
on a smart meter and only sending these features out. Since the
state of a binary unit can be encoded by a single bit the data
to be transmitted can be reduced to 1MB in order to obtain
energy disaggregation results with a temporal resolution of
1Hz.

The system also handles unmodeled devices gracefully. Once
the binary subcomponents are identified, modeling appliances
is decoupled, i.e. in contrast to e.g. latent variable approaches
which require to jointly model all appliances, this approach
could in principle be used to infer the power consumption of

any number of devices without having to explicitly model their
dependencies.

VI. FUTURE WORK

Online or stream processing: The algorithm described
was used in a fully offline fashion which in turn would
require buffering of all the data until inference. In a real life
setting, it would be desirable if the unsupervised pre-learning
can be carried out in an online way which does not require
buffering of the entire dataset. Energy consumption datasets
exhibit high temporal structure and temporal randomization
was required for effective pre-training. Identifying the binary
subcomponents in an online way probably requires to buffer
some data points and selecting those data points to be buffered
is crucial in making online subcomponent identification work.
Unsupervised appliance models: In order to make the al-
gorithm completely unsupervised, one could try to force the
deep neural network to infer binary components such that
a simple unsupervised approach can piece the components
together. Recall the example from earlier where there are two
ways for the network to accommodate all of the variability
of a time series containing two appliances which consume
200W and 250W but are never turned on at the same time,
namely w; = [200W,250W] and w; = [200W,50W]. The
first explanation already disaggregates the energy successfully
whereas for the second explanation a non-linear function
would have to be learned in an unsupervised way. Since we
assume that both appliances are never turned on at the same
time, the binary subcomponent matrix for the first explanation
is much sparser than for the second explanation. Enforcing
sparsity in the binary layer of the matrix can in theory force
the network to identify “easier” subcomponents to combine in
an unsupervised way.

Exploiting temporal structure: So far, the algorithm makes
no use of temporal information. Exploiting temporal infor-
mation (beyond the temporal structure encountered within
every voltage cycle) could improve the performance for some
appliances. A straight-forward approach could be to infer the
appliance activities using Conditional Random Fields instead
of Logistic Regression or to use recurrent deep networks
instead of a feed-forward network.

Multi-state appliances: So far, all appliances were modeled
as 2-state appliances. Logistic regression can in principle
handle multinomial responses (targets), therefore extending the
algorithm to handle multi-state appliances is straight-forward
and its merit should be investigated.

Energy Estimation: So far, a naive energy estimator that
assumes constant power for the on and off states of each
appliance was used. Every binary subcomponent is associated
with active power, i.e. the weight between the corresponding
binary unit and the output layer. This information is not used
so far. A more fine grained approach to the problem of energy
estimation could take the activity and the associated active
power of the binary units into account.
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