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Abstract—We examine twelve studies on the efficacy of
disaggregated energy feedback. The average electricity re-
duction across these studies is 4.5%. However, 4.5% may be
a positively-biased estimate of the savings achievable across
the entire population because all twelve studies are likely to
be prone to ‘opt-in’ bias hence none test the effect of disag-
gregated feedback on the general population. Disaggregation
may not be required to achieve these savings: Aggregate feed-
back alone drives 3% reductions; and the four studies which
directly compared aggregate feedback against disaggregated
feedback found that aggregate feedback is at least as effective
as disaggregated feedback, possibly because web apps are
viewed less often than in-home-displays (in the short-term,
at least) and because some users do not trust fine-grained
disaggregation (although this may be an issue with the
specific user interface studied). Disaggregated electricity
feedback may help a motivated sub-group of the population,
which we call ‘energy enthusiasts’, to save more energy but
fine-grained disaggregation may not be necessary to achieve
these energy savings. Disaggregation has many uses beyond
those discussed in this paper but, on the specific question of
promoting energy reduction in the general population, there
is no robust evidence that current forms of disaggregated
energy feedback are more effective than aggregate energy
feedback. The effectiveness of disaggregated feedback may
increase if the general population become more energy-
conscious (e.g. if energy prices rise or concern about climate
change deepens); or if users’ trust in fine-grained disaggrega-
tion improves; or if innovative new approaches or alternative
disaggregation strategies (e.g. disaggregating by behaviour
rather than by appliance) out-perform existing feedback.
This paper also discusses opportunities for new research into
the effectiveness of disaggregated feedback.

I. Introduction

Electricity disaggregation estimates the energy consumption
of individual appliances (or load types or behaviours) using
data from a single meter. One use-case is to estimate an
itemised electricity bill from a single smart meter measuring
the whole building’s electricity demand.
Research into electricity disaggregation algorithms began

over thirty years ago [1], [2]. Today, there is a lot of excitement
about energy disaggregation. Since 2010 there has been a
dramatic increase in the number of papers published on energy
disaggregation algorithms and since 2013 there have been over
100 papers published each year [3]. Disaggregation is big busi-
ness: In November 2015 disaggregation provider Bidgely raised
$16.6 million USD [4]. There are now at least 30 companies
who offer disaggregation products and services [5], [6].
This paper discusses four main questions: 1) Can disaggre-

gated energy data help an already-motivated sub-group of the
general population (‘energy enthusiasts’) to save energy? 2)
How much energy would the general population save if given
disaggregated data? 3) Is fine-grained disaggregation required?
4) For the general population, does disaggregated energy feed-
back enable greater savings than aggregate data?

A. An introduction to systematic reviews
This paper is, to the best of our knowledge, the first sys-

tematic review on the effectiveness of domestic, disaggregated
electricity feedback.
Systematic reviews are common in fields such as medicine

and the social sciences. Systematic reviews aim to find results
which are robust acrossmultiple studies as well as opportunities
for future research. The process starts with a search, using
predefined criteria, for existing papers. Results and possible
biases are extracted from each paper, collated and combined.
See Garg et al. [7] for a discussion of systematic reviews.
There is a distinction between narrative reviews and sys-

tematic reviews. Most review articles are narrative reviews.
These are written by domain experts and contain a discussion
of existing papers. Narrative reviews are often very valuable.
But they are rarely explicit about how papers were selected
and rarely attempt a quantitative synthesis of the results.
Systematic reviews aim to cover all papers which match de-

fined criteria relevant to a specific research question. Systematic
reviews are explicit about how papers were selected and present
a quantitative summary of each paper and a quantitative
synthesis of the results. Systematic reviews may contain a
‘meta-analysis’ where results from each study are combined into
a single statistical analysis which provides greater statistical
power than any individual study can deliver.
Systematic reviews are not perfect, of course. Bias can still

creep in via the selection process; and different statistical
analyses may present different results.
Why bother with systematic reviews? Replication is a essen-

tial to the scientific process. Peer review is necessary but not
sufficient to ensure that individual studies present an accurate
estimate of the ‘true’ state of the world. Reviewers rarely, if
ever, attempt to replicate results; possibly because there is
insufficient reward to motivate reviewers to spend time on
replication. Instead it is left to the community to attempt to
replicate results. Recent large-scale replication projects suggest
that replicable results may be the exception rather than the
rule. An attempt to replicate results from 98 psychology papers
could only replicate 39% of the results [8], [9]. A similar study
in cancer biology found that only 6 of the results in 53 high-
profile papers could be replicated [8], [10]. Hence it is advisable
to exercise appropriate scientific scepticism when reading any
single study; and it is beneficial to collect all papers on a specific
question to identify results which are robust across studies.

B. Methodology
Broadly, this paper discusses whether deployment of dis-

aggregation across the entire population is likely to reduce
energy consumption. We assume that disaggregated data for
a population-wide deployment would be delivered via websites,
smart-phone applications or paper bills.
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We found twelve groups of studies on the question of whether
disaggregated energy data helps users to reduce their energy
demand. These studies are summarised in Table I.
We aimed to do an exhaustive search of the literature

although it is not possible to rule out the possibility that
we missed studies. We used three search engines: Google
Scholar, the ACM Digital Library and IEEE Xplore. The search
terms we used were ‘disaggregated [energy|electricity] feedback’
and ‘N[I|A|IA]LM feedback’. These searches produced a huge
number of results, many of which were not relevant to our
research question. We manually selected papers which test the
effectiveness of disaggregated electricity feedback. We accepted
experiments conducted either in a laboratory environment or in
a field test. We also searched the bibliography sections of papers
to find more papers. For example, a review article by Ehrhardt-
Mertinez et al. [11] contained references to five relevant studies
on disaggregated energy feedback.

II. Can disaggregated electricity feedback enable
‘energy enthusiasts’ to save energy?

The mean reduction in electricity consumption across the
twelve studies (weighted by the number of participants in each
study) is 4.5%. However, as we will discuss below, this figure is
likely to be positively-biased and has a substantial (although
unquantifiable) amount of uncertainty associated with it.
Aggregating the results by taking the mean of the energy

savings across the twelve studies is a crude approach. It would
have been preferable to do a full meta-analysis where biases
are identified and compensated for [7]. Davies et al. [12] did
such a meta-analysis for studies on aggregate energy feedback.
But the studies on disaggregated feedback appear to us to be
too varied and, perhaps most fundamentally, six of the twelve
studies only provided a point estimate of the effect size. At the
very least, a meta-analysis requires that each study provides a
point estimate and a measure of the spread of the results.
We must also be explicit about the likely biases in each study.

Please note that this is not an attack on the papers in question!
We appreciate that it is not possible to conduct a ‘perfect’
study. The real world is messy and researchers cannot control
for everything! Being explicit about the biases allows us to
assess how much trust we should put into the assertion that
disaggregated energy feedback reduces consumption by 4.5%.
There are several sources of positive bias present in the

papers. All twelve studies are prone to ‘opt-in’ bias, where
subjects self-selected to some extent and so are likely to be
more interested in energy than the general population.
Eight studies did not control for the Hawthorne effect. This

strange effect is where participants reduce their energy con-
sumption simply because they know they are in an energy
study. For example, Schwartz et al. [13] conducted a controlled
study on 6,350 participants, split equally between control and
treatment groups. Subjects in the treatment group received a
weekly postcard saying: ‘You have been selected to be part of a
one-month study of how much electricity you use in your home...
No action is needed on your part. We will send you a weekly
reminder postcard about the study...’ Participants who received
these postcards reduced their consumption by 2.7%. Hence
studies on disaggregated energy feedback which do not control
for the Hawthorne effect are likely to over-estimate energy
savings attributable to the disaggregated energy feedback.

Six studies used feedback displays which were probably more
attention-grabbing than the feedback mediums that would be
used in a population-wide roll-out of disaggregated energy
feedback. Some studies gave home-visits to some participants
to enable additional reductions (e.g. [14]–[16]). All but two
studies were too short to observe whether energy reductions
persist long-term. Perhaps some authors experimented with
multiple statistical techniques until one delivered a significant
result. And, finally, eight studies used sub-metered data, hence
avoiding any mistrust of disaggregated estimates [17].
As well as being explicit about biases in each study, we must

acknowledge that the literature as a whole may be prone to
publication bias. How many negative results exist unpublished?
Perhaps academics fear that reviewers would reject a null
result? Might companies fear that customers or shareholders
would be driven away? A study on publication bias in the
social sciences found that positive results are 60% more likely
to be written up than null results and 40% more likely to be
published [18]. They propose that science would benefit from
mechanisms to reduce the effect of publication bias, such as
pre-registering experiments.
Despite these sources of bias, there is evidence that energy

disaggregation can enable energy savings for ‘energy enthusi-
asts’. Two large studies illustrate this assertion:
One group of studies analysed the disaggregation service

provided by Home Energy Analytics (HEA) [15], [16], [19]–[21].
All participants opted into HEA’s system and hence could
loosely be considered ‘energy enthusiasts’. In total the HEA
papers examine 1,623 users. 1,239 used the system for up
to 44 months; the rest used the system for one year. The
average reduction in electricity consumption across all 1,623
‘energy enthusiasts’ was 6.1%. The top-quartile (310 ‘super-
enthusiasts’) reduced their electricity consumption by 14.5%.
But note that none of the HEA studies had a control group.
Another large study was performed in 2014 over three months

on 1,685 PG&E users [17], [22]. Half received an in-home-
display (IHD) and half received access to Bidgely’s website
(which includes disaggregation). No statistically significant
reduction in consumption was found across all 1,685 users,
despite positive biases (e.g. users could choose between the
IHD or Bidgely). However, a sub-group of users on a time-of-
use (TOU) tariff (‘energy enthusiasts’) saved 7.7%. The TOU
group consisted of 142 IHD users and 136 Bidgely users.

III. How much energy would the WHOLE population
save if given disaggregated data?

All twelve studies suffer from opt-in bias to some extent.
Seven studies have a high risk of opt-in bias because par-
ticipants sought out the intervention. As such, the study
participants are unlikely to be representative of the general
population. No ‘perfect’ correction for opt-in bias exists.
What will the average energy saving be across the popula-

tion if, say, the majority of the population completely ignores
disaggregated energy feedback but a small sub-population of
‘energy enthusiasts’ save 4.5%?
How can we estimate the proportion of ‘energy enthusiasts’

in the population? Three studies reported the number of people
approached to participate versus the number who agreed to
participate [16], [25], [37]. This ‘opt-in rate’ is a crude estimate
on the lower bound of the proportion of the population who are
‘energy enthusiasts’ (because, in order to agree to participate in
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Table I
Studies on the effectiveness of disaggregated energy feedback.
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“RECS” [23] dedicated
computer 25 100 ∼ 8 2 12.9 3 0.6 sec 0 H&C HDM 7 3 3 L 3

McCalley & Midden 2002 [24] Virt. wash.
machine 25 100 1 - 0.0 7 - 0 H&C - G 3 3 L -

Wood & Newborough ’03 [25];
Mansouri & Newborough ’99 [26] LCD by cooker 10 44 1 ≥ 2 12.2 7 15 sec 0 C - 7 3 3 L 3

“ECOIS-I”
[27], [28]

Dedicated
laptop 8 8 16 2 9 3 30 min next

day H D,
10D P 7 7 H# 3

“ECOIS-II”
[28]–[30]

Dedicated
laptop 10 19 16 3 18 3 30 min next

day H D,
10D P 3 3 H# 3

“EnergyLife” trial 1
[31]–[33] iPhone 13 13 7 3 5 3 ? 1-2

min H&C D P 7# 7# H# 7#

“EnergyLife” trial 2
[34] iPhone 4 4 7 4 38 7 ? 1-2

min H&C D P 7 7# H# 7#

Home Energy Analytics
[15], [16], [20], [21]

Web & email
& home visits 1623 1623 5 ≤ 44 6.1 3 hourly 0 H Y P 7 7 L 3

Bidgely 2013
[35], [36]

Web, mobile,
email 163 328 ≥ 3? - 6 3

30 sec
& 1 hr 0 H&C DBY P 3 7 H 3

PG&E Pilot 2014
[17], [22]

Web, mobile,
email 844 1685 ≥ 3? 3 2.1 3 30 sec 0 H&C DBY P 3 7 H 3

Schwartz et al. 2014 [14] Web, mob, TV 6 6 ∼ 10 18 7.8 3 ? 0? H&C ? ? 7 7 H 7

Sokoloski 2015 [37] Web, mob,
email 12 70 ≥ 3? 0.75 3 3 30 sec 0 H&C DBY P 3 7 L 3

A dash ‘-’ in a cell means ‘not applicable (NA)’ and ‘?’ means ‘not specified in paper’.
U Absolute reductions minus reductions for the no-contact control (or the most similar group to a no-contact control available).
R Recommendations can be ‘P’ for ‘personalised’ or ‘G’ for ‘general’ or ‘7’ for none given.
V Volunteer bias can be ‘H’ for ‘high’ (subjects sought out the intervention) or ‘L’ for ‘low’ (subjects were approached by the
experimenters but only a fraction agreed to participate).

T H=hourly, D=daily, M=monthly, Y=yearly, B=current billing cycle.
# Paper is silent on this question. Assume the worst.

an energy study, people probably need to be energy enthusiasts
and also have time to participate in the study and be willing
to let experimenters into their homes etc.). The average opt-in
rate is 16%. This is consistent with [38] who estimate that 20%
of the population are ‘[energy] monitor enthusiasts’. If 16% of
the population reduced their energy consumption by 4.5% then
the mean reduction would be 0.7%.
This may seem rather pessimistic. We assumed that 84%

of the population (the ‘disinterested’) would save no energy.
Perhaps this is a little unrealistic: We might hope that some
proportion of the ‘disinterested’ group would save a little
energy. Furthermore, we used a crude method to determine
a lower bound on the proportion of ‘energy enthusiasts’ in
the population. But remember that we have multiple reasons
for believing that a 4.5% saving across the ‘energy enthusiast’
population is an over-estimate. We assume that these negative

and positive biases cancel out, although we cannot be sure.
Also note that we simply have no good evidence for how

the general population would react to disaggregated energy
data. However, related studies have found that effect sizes
reported on opt-in groups are often substantially diminished
when studied on the general population [12].
Can we compare these figures to other research? A study in-

volving 2,000 Swedish households found that participants who
visited a website which provided user-friendly analysis of their
aggregated electricity consumption reduced their electricity
consumption by 15% on average [39]. The savings sustained for
the duration of the four-year study. But only 32% of those with
access to the website visited the website. Households who did
not visit the website did not reduce their energy consumption.
Hence the average energy reduction across all households with
access to the website was 32% × 15% ≈ 5%.
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IV. Is ‘fine-grained’ disaggregation necessary?
Much research into disaggregation aims to deliver ‘fine-

grained’ estimated power demand for each appliance at rela-
tively high temporal resolution (e.g. 0.1 Hz). Fine-grained dis-
aggregation is complex to engineer and often computationally
expensive to run. Is it worth the effort? Home Energy Analytics
(HEA) do ‘coarse-grained’ disaggregation: they disaggregate
energy usage into five broad categories at monthly temporal
resolution. Despite the coarse granularity of the feedback, HEA
achieved significant average reductions in electricity usage of
6.1% [15], [16], [19]–[21]. HEA’s results tell us that fine-grained
feedback is certainly not required. Fine-grained feedback en-
ables many use-cases not discussed here but, on the question of
the efficacy of feedback to drive energy reductions, we simply do
not know if fine-grained feedback is more effective because no
studies compared fine-grained against coarse-grained feedback.
Fine-grained feedback might be less effective because some
users do not trust it [17].

V. Does aggregate or disaggregated feedback
enable greater savings for the whole population?
Four studies directly compared aggregate feedback against

disaggregated feedback. Three of these studies found aggregate
feedback to be more effective than disaggregated feedback [17],
[37], [40]. The fourth study found disaggregated feedback and
aggregate feedback to be equally effective [24]. Are there any
explanations for this counter-intuitive result?
Two of the four studies [24], [40] were synthetic computer

simulations and so may not generalise.
The other two studies were well controlled field studies [17],

[37]. In both field studies, aggregate feedback was displayed
on an always-on IHD whilst disaggregated data was displayed
on Bidgely’s website (which has since been redesigned [22]).
Participants in the disaggregation groups did not have an
IHD. Sokoloski [37] found that, on average, participants in
the IHD condition viewed the IHD eight times per day whilst
participants in the disaggregation condition viewed the website
only once per day. Churchwell et al. [17] found a similar pattern
and also reported that some participants did not trust the
fine-grained disaggregated data. Perhaps aggregate data is not
intrinsically more effective than disaggregated data; instead,
perhaps IHDs are more effective than websites or mobile apps.
Perhaps dedicated displays for disaggregated data may help

enhance efficacy, although this adds costs. Or, as Sokoloski [37]
suggests, efficacy may be increased by combining disaggregated
feedback presented on a website with aggregate feedback pre-
sented on an IHD.
Furthermore, a meta-analysis of the efficacy of aggregate en-

ergy feedback suggests it alone achieves 3% energy savings [12].
This analysis adjusted for several (but not all) biases.

VI. Suggestions for future research
There are several gaps in the existing literature. Below is a

list of potential experiments (more ideas are listed in [6]).
No existing field studies compared aggregate feedback

against disaggregated feedback on the same type of display.
The studies which did compare aggregate feedback against
disaggregated feedback used an IHD for aggregate feedback and
a website for disaggregated feedback and found that the aggre-
gate feedback was more effective at reducing energy demand.
But we cannot rule out that this result is simply because users

viewed the IHD more frequently than they viewed the website.
Hence it would be valuable to run an experiment where both
the ‘aggregate’ and ‘disaggregated’ groups received feedback
on the same device (e.g. an IHD with a dot-matrix display to
display disaggregated feedback).
A related study would explore the effectiveness of aggregate

feedback presented on an IHD combined with access to disag-
gregated data on a website; compared to just the IHD. The
IHD might pique users’ interest and motivate them to explore
their disaggregated energy usage on a website or smart phone.
Another study would compare fine-grained disaggregated

feedback against coarse-grained disaggregated feedback.
Below is a list of suggestions for how to make future pa-

pers on feedback as useful as possible: If possible, conduct a
randomised controlled trial. Publish as much information as
possible. How were subjects recruited? Were subjects selected
from the general population? Did any subjects withdraw during
the study period? Was there a control group? Did the study
control for the Hawthorne effect and weather? What sources
of bias may influence the result? How exactly was feedback
presented; and how rapidly did the information update? How
often did participants view the display? Was disaggregated
data available from the very beginning of the experiment or
did the disaggregation platform take time to adapt to each
home? Publish the results of all the valid statistical analyses
performed; not just the ‘best’ result. Crucially, please publish
some measure of the spread of the result (e.g. the standard
deviation). Ideally, publish online, full, anonymised results so
researchers can collate your results into a meta-analysis.

VII. Conclusions
Disaggregation has many use-cases beyond feedback. This

paper specifically considers a single use-case of disaggregation:
Reducing energy consumption via feedback. Averaged across
the population, there is evidence that disaggregated feedback
may help to reduce electricity consumption by ~0.7-4.5%. But
disaggregation might not be necessary to achieve this saving
because aggregate feedback may be equally effective. Amongst
‘energy enthusiasts’, disaggregated feedback might save more
energy but fine-grained disaggregation may not be necessary.
We must emphasise that all we can do is report the current

state of the research. We cannot rule out the possibility that
disaggregated feedback is, in fact, more effective than aggregate
feedback. Neither can we rule out that fine-grained feedback
is more effective than coarse-grained. All we can say is that
current evidence contradicts the first hypothesis and that there
is no evidence available to address the second hypothesis.
Importantly, note that the existing evidence-base is hetero-

geneous and has many gaps. Perhaps a large, well controlled,
long-duration, randomised, international study will find that
disaggregated feedback is more effective than aggregate.
Perhaps users will become more interested in disaggregated

data if energy prices increase or if concern about climate change
deepens. Or perhaps users in fuel poverty will be more likely to
act on disaggregated feedback in order to save money. Or per-
haps users will trust disaggregation estimates more if accuracy
improves or if designers find ways to communicate uncertain
disaggregation estimates. Or perhaps real-time feedback or
better recommendations will improve performance. Or perhaps
disaggregating by behaviour rather than by appliance will make
disaggregated feedback more effective.
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