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Abstract—The paper presents the application of the classifier 

fusion to identify electrical appliances present in the household. 

The analysis is based on the processing of features extracted from 

the current signal, recorded by the dedicated data acquisition 

hardware, installed in the vicinity of the energy meter. The 

selected features are based on the medium frequency 

measurements. The proposed identification module uses three 

classifiers of the same type: decision trees, rules and random 

forest. Experimental results prove the effectiveness of combining 

various classifiers to the same task and show their advantages 

and drawbacks.  
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I.  INTRODUCTION 

The Non-Intrusive Appliance Load Monitoring (NIALM) 
[1] is currently the standard tool considered for the analysis of 
the power consumption in particular devices working in 
households. The complete systems are proposed to determine 
the energy profile for each type of appliance, identifying the 
most expensive ones. As only one measurement module 
(located in the vicinity of the meter) is used here, the main 
problem is the identification software, operating on the set of 
selected voltage and current features. Both issues are evaluated, 
by proposing combinations of computational algorithms and 
data vectors for processing. Multiple Artificial Intelligence 
(AI) approaches were implemented so far, including Artificial 
Neural Networks [2], Support Vector Machines [3], rules [4] or 
Hidden Markov Models [5]. Their strength lies in the ability to 
automatically train and classify events occurring in the power 
network. The most pressing issue is the maximization of the 
appliance identification accuracy, which is the basis for the 
further energy consumption analysis. To achieve this aim, more 
complex methods may be implemented, such as the deep 
learning or the ensemble of classifiers. Also, comparison of the 
particular methods’ outcomes is required to select the best ones 
for the particular problem.  

The paper presents the application of the classifiers’ fusion 
in the NIALM approach to identify appliances working in the 
household. It is the method of implementing multiple decision 
making algorithms to combine their decisions in attempt to 
increase the identification accuracy compared to the separate 
classifiers. Two aspects are important in the presented 

approach: selection of features extracted from the current and 
voltage signals (acquired by the specialized hardware) and 
implementation and configuration of classification algorithms, 
responsible for identifying all appliances operating in the 
apartment. The implemented algorithms belong to the rule-
based approach: decision trees, rules induction and random 
forest. The combination of this group of classifiers should be 
more effective in the task than using any individual method.  

The paper’s structure is as follows. The description of the 
implemented NIALM architecture is in Section 2. The vector 
of features (further called example) and details of its generation 
are presented in Section 3. The algorithms implemented in the 
ensemble are introduced in Section 4. Experimental results are 
presented in Section 5, while Section 6 contains conclusions 
and future prospects for the proposed solution. 

II. PROPOSED NIALM ARCHITECTURE 

The system implemented in the presented research (Fig. 1) 
is designed to work on-line in the environment with multiple 
two-state appliances (working in the on-off states, such as the 
kettle or the lightbulb) and finite state machines (such as 
washing machines or dryers), working in parallel. It is able to 
detect changes in the devices configuration, leading to the 
modified energy consumption. This includes turning the 
devices on or off, or changing its state (like the washing 
program). The architecture consists of two parts. The first one 
is the DAQ hardware, located near the energy meter, typically 
measuring the overall energy consumption in every apartment. 
It is assumed that the accurate appliance identification is not 
possible using only the standard infrastructure currently 
installed in the household (such as presented in [6]). Therefore 
the specialized module is used to acquire current and voltage 
signals with the 2kHz sampling frequency. It is considered by 
the Authors as the medium range, in the middle between the 
single [7] and hundreds of Hertz (like in the EMI analysis [8]).  

The second part of the architecture is the software module, 
processing the acquired signals. It is designed to perform the 
analysis on-line, detecting the change in the configuration of 
the operating appliances. Its operation is based on executing 
three subsequent stages (Fig. 2): 

1. Detection of changes in the measured current. It is the main 
source of information about changes in the devices 



configuration (further called the “event”). Its detection is 
performed twice a second, based on the analysis of the one 
thousand samples vector, for which the maximum value is 
calculated. This way it is possible to detect the change in 
every appliance assuming such events do not occur faster 
than once a half-second. The event is detected if the 
difference in two subsequent maximum values are above 
the detection threshold θ. The operation is then performed 
on the envelope of the current signal (Fig. 3), created from 
the original current waveform by selecting the maximum 
values from vectors of samples. Every index value (from 
the x-axis) represents the half a second period. Selection of 
the θ value is the compromise between the ability to detect 
changes even in the energy efficient devices (such as 
lightbulbs) and the false alarms (suggesting that the change 
took place although in fact it did not). Because turning the 
device on is sometimes related with the transient state (high 
pitch in the current, quickly returning to the new level), the 
beginning of the steady state must be indicated (see circles 
in Fig. 3). Only then the operation of the feature extraction 
from samples may commence. The black circles are the 
values differing from the previous ones above the threshold. 
The red ones indicate time instants when the appliance state 
change is completed, triggering its identification phase. The 
event is described either by the single red circle (for the 
change without the transient state) or the sequence of black 
circles followed by the red one (for the configuration 
change with the transient state).  

2. After the detection, when the current signal is already in the 
steady state, features used for the identification are 
calculated. They include current and voltage parameters 
extracted from the samples’ vector (described in Section 3).  

3. The features are the input to the fusion of classifiers 
module, which make their decisions individually. After the 
voting (where responses of all classifiers are combined), the 
final decision d is made.  

 

 

Fig. 1. The proposed NIALM architecture 

All implemented classifiers are trained in the off-line mode 

on the previously prepared data sets L (1). The training 

examples e1, …, en were obtained for each appliance 

separately during their operation monitoring. The particular 

device was working in the isolated environment for the 

predefined amount of time (for instance one hour), in which 

the current and voltage were measured. All other appliances 

remained, so the subsequent processing referred only to this 

device. The samples’ vectors were used to calculate the 

features si representing the single appliance and supplement 

them with the appliance identifier ci, forming the training 

examples ei. This way, multiple vectors could be extracted, in 

various time instants of the device operation period. In the 

presented research each of k appliances was represented in the 

set L by 100 labeled examples (i.e. with known identifiers of 

appliances, which is required for the subsequent supervised 

learning of the AI approaches [9]). 

 

Fig. 2. The software part of the NIALM architecture 
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Fig. 3. The current envelope for the event detection 

After detecting the event, all features are calculated for the 

extracted vector of samples in the steady state. The obtained 

values refer to the combination of currently operating 

appliances. To identify the device causing the event, the 

features must be obtained as the difference between the 

features calculated after the previous event (in the time instant 

tj-1) and after the current event (in the time instant tj) – see (2). 

Such an operation is required because in the tested 

environment multiple devices work simultaneously, therefore 

the identification in the particular moment is not aimed at 

determining all currently working appliances. Instead, only the 

change with respect to the previous configuration is detected 

and the appliance responsible for it identified. 
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III. DATA VECTORS 

Selection of the features required to identify the particular 

appliance is the important part of the employed machine 

learning scheme [10]. It is still unknown, which parameters of 

the current and voltage signals are the most useful to 

distinguish between various devices [11]. Therefore it is 

reasonable to collect their maximum set, as during the training 

of any implemented classifier only part of them will be 

considered (although each algorithm might select different 

subset). The calculations were performed for 1024 samples. 
The following characteristics were extracted from the 

current and voltage patterns in the steady state: 

 Amplitudes of the first sixteen harmonic components 

of the current (where the first component is at 50Hz) 

 Phase shifts of the first sixteen harmonic components 

of the current 

 Root Mean Square (RMS) of the current 

 Mean value of the current 

 Maximum current value 

 DC component in the current 

 Mean power 

 Values of the active power in the first sixteen 

harmonics 

 Values of the reactive power in the first sixteen 

harmonics 

The set of overall 69 real-valued features was obtained for 

the training examples and is calculated after detecting the 

change in the current level. 

IV. ENSEMBLE CONSTRUCTION 

This section briefly introduces the implemented 
classification algorithms and their configuration for the 
ensemble. All the selected methods are rule-based. Knowledge 
they represent after the training is legible for the human, which 
facilitates understanding of the ensemble operation and 
possible modifications. They differ in the generalization ability 
(i.e. the possibility to correctly identify examples not present 
during the training). The odd number of algorithms selected for 
the fusion minimizes the threat of the decision uncertainty 
when outcomes of the subsequent modules are equally 
distributed among different appliance identifiers [12]. 

The implemented algorithms are trained on the same set L, 
but rules constructed in the process may be different for each 
algorithm. Although there are multiple approaches to combine 
the partial identifications into the final decision [13], in the 
presented research the simplest case was considered, where 
each classifier has equal vote and the decision is made based on 
the majority. Below each method is presented, including the 
adjusted parameters to maximize the identification accuracy. 

All three methods were implemented in the Matlab 
environment by the Authors. This allowed for controlling the 
code and adjusting the parameters of every approach. 
Modifications of the original approaches are briefly described 
in the following subsections.  

A. Decision tree (DT) 

This is the memory-efficient method [14], presenting the 
tree-like structure, starting from the highest node (root), 
connected with nodes of lower levels and ending with the 
terminal nodes (leaves). All nodes except the latter, store tests 
that compare the value of the selected feature with the 
threshold. The results of the test leads to the node on the lower 
level, until the leaf is reached. Selection of the test to the node 
during the tree construction is the key element of training. The 
minimum entropy criterion was used for this purpose. The 
parameter introduced by the Authors of the DT was the method 
of selecting feature for the test when multiple features have 
identical minimum entropy.  

B. Rules Induction (RI) 

The algorithm implemented by the Authors is the modified 
version of the classic AQ algorithm [15], adjusted to process 
the continuous data (for details see [16]). The generated rules 
are not connected to one another, which allows for firing 
multiple rules at the same time. Each rule has the IF … THEN 
form, with the premises (conditions to meet) and the 
conclusion (identification of the appliance) parts. Their 
generation consists in the iterative generation of multiple 
premises with the same conclusion, allowing to cover the same 
example. Among them, the best one in the sense of 
generalization is selected and all examples covered by it are 
eliminated from the set L. The process is concluded when there 
are no more examples to cover. The parameter of the method is 
the number of candidates for the rule for each example.  

C. Random forest (RF) 

This is the newest approach to the rule-based systems, 
using multiple DT as parts of the classifier [17]. Each tree 
makes the individual decision based on the input vector of 
features and the final decision is made based on voting, where 
the majority of trees pointing at the identical appliance decides 
about the overall outcome. Therefore the RF is the fusion of 
trees. Contrary to the DT presented in section 4A, this time 
each tree is built considering not only the best attributes for the 
node, but also the worse ones. This way the trained structure is 
efficient from the statistical point of view and should have high 
generalization abilities. The adjusted parameters of the RT 
include the number of constructed trees and the set of 
attributes’ values used for constructing the node. 

V. EXPERIMENTAL RESULTS 

The experiments were performed in the isolated laboratory 
containing all appliances working in various combinations. The 
data acquisition and processing hardware was implemented on 
the personal computer equipped with the DAQ card responsible 
for measurements. The analyzed devices included (in brackets 
the number of the identifier is given): power-saving bulb (1), 
dryer (2), vacuum cleaner (3), mixer (4), juicer (5) and kettle 
(6). They were turned on or off in various moments of time, 
leading to different configurations of devices working at the 
particular moment. The example of the half-hour experiment is 
presented in Fig. 4, where the upper diagram contains the 
measured current, while the lower one shows which appliances 
were actually turned on. Each color represents the individual 



device, having one of two values: “0” (when it is turned off) 
and its identifier (when it is turned on). 

 

Fig. 4. The example of the operating sequence for six appliances 

In the sequence from Fig. 4, 128 events were detected. 
Because the event detection threshold θ was set to 100mA, 
among the actual changes in the appliances configuration, the 
false alarms were identified as well. For each event the 
identification procedure was commenced by every classifier in 
the ensemble. The fragment of the sequence processing is 
shown in Tab. 1. The first column contains the index of the 
event, while the second one (c) contains the actual identifier of 
the appliance (according to previous assignments of the 
identifier to the particular device). Three subsequent columns 
(dDT, dRI, dRF) contain individual decisions made by the 
classifiers, while the last column (d) contains the decision 
made by the ensemble. The “0” value for the eight event is for 
the false alarm (no actual change in the device configuration 
occurred). The “-1” value for the RI method means no rule was 
fired - the classifier is unable to make any decision.  

TABLE I.  RESULTS OF THE SEQUENCE PROCESSING 

No c dDT dRI dRF d 

1 1 1 1 1 1 

4 3 1 3 3 3 

8 0 0 0 0 0 

12 5 1 -1 5 ? 

16 6 6 6 6 6 

31 4 4 -1 4 4 

51 3 2 2 2 2 

58 0 0 0 1 0 

Results show the input of every classifier to the ensemble. 
Their combination allows for minimizing the incorrect 
decisions, made by each module individually. In some cases 
even the combination of classifiers is unable to make decisions 
(event No. 12), as each produces different output. To solve the 
problem, the weighting to the voting should be introduced, 
supporting the classifier with the smallest number of incorrect 
decisions on the testing data. The comparison of the individual 
performance of selected algorithms is in Tab. 2. According to 
them, the outcome of the ensemble would be the (correct) 
identifier 5, as pointed by the RF, which has the maximal 

accuracy on the testing set. The column d shows the accuracy 
of the ensemble, which is greater than any individual classifier. 

TABLE II.  IDENTIFICATION ACCURACY [%] OF INDIVIDUAL 

CLASSIFIERS 

Algorithm DT RI RF d 

Overall accuracy 82.81 64.06 85.93 92.96 

False alarm accuracy 97.82 66.30 94.56 96.73 

Appliance identification 
accuracy 

55.55 58.33 83.33 83.33 

The following conclusions can be drawn from the experiments: 

 The overall ensemble accuracy is higher than its partial 
accuracies (as different classifiers are the best in detecting 
false alarms and identifying appliances).  

 The most difficult event to detect is the change of the 
power saving bulb state. It is especially hard to identify 
when devices with high power consumption operate in the 
background. Sometimes its switching on or off is missed, 
which should be corrected by the monitoring system during 
the next event detection. 

 Because of the large number of false alarms, their correct 
detection must be performed by the classifiers. In most 
cases, it is possible to achieve by the ensemble.   

 The DT is the most efficient in detecting the false alarms, 
although is not so efficient in other cases. Only two (out of 
92) of the former were incorrectly identified.  

 The RF has overally the best performance, but also makes 
more mistakes during the false alarm identification. 

VI. CONCLUSIONS 

The proposed scheme of the ensemble proved its efficiency 
when working with a set of appliances operating in the 
household. Although each classifier fails in identifying 
multiple events, their combination allows for detecting most of 
state changes. The most problematic for the module are false 
alarms and detections of the power-saving devices. Identifying 
all these events may need the sophisticated voting mechanisms 
or implementing more classifiers to the scheme. The problem 
may be using all presented methods in the embedded 
microprocessor system, requiring low level code optimization. 
Also, the module should be tested on the greater number of 
devices working at the same time, also outside the laboratory 
environment, where the influence of other apartments may be 
present. These aspects will be investigated in the nearest future.  
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