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Abstract—Most of the existing Non-Intrusive Load 

Monitoring (NILM) technologies need to measure the 

appliances to get the relevant information to build 

appliance model before they can be put into use, which 

limits the technological advantages and implementation. 

In this paper, we proposed a fully unsupervised appliance 

finite state machine (FSM) modelling framework for 

NILM. Without intruding into the internal load or 

requiring any priori knowledge of the appliance model, 

the framework can automatically establish the FSM 

model for appliance including complete state set of FSM, 

topological structure, and related model parameters, only 

based on load event signatures. It can significantly 

improve the applicability of NILM technologies, and 

provide basis for the realization of auto-setup NILM. 
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I. Introduction 

Non-intrusive Load Monitoring (NILM) is a novel 

technique for monitoring the details of load consumption [1]. 

Building the appliance load model is the basis of 

implementing NILM. So far, the finite state machine (FSM) 

model has been commonly used for appliance modelling. 

There exist two main ways to obtain the FSM model: (1) to 

obtain a complete set of labeled appliance load signature 

samples, and then determine the parameters of appliance FSM 

model by the supervised parameter learning methods [2]; (2) 

to learn the state set and the state transition topology of the 

FSM model of the appliance, and then use the unsupervised 

parameter learning methods to estimate the model parameters 

from the consumption data of the total load [3]. They all need 

to intrude into the internal load to get the relevant information 

used to build appliance model, which limits the applicability 

of NILM technologies. To this end, researchers have been 

carrying out researches on completely unsupervised appliance 

FSM modelling for NILM. 

For the fully unsupervised appliance FSM modelling, 

initially, Hart (in 1992) proposed an overall idea of automatic 

FSM modelling with the use of Zero Loop-Sum Constraints 

(ZLSC) and Uniqueness Constraints (UC) two heuristic 

rules[1]. Baranski and Voss (in 2004) took the load event 

sequence as the analysis object, used genetic algorithm (GA) 

 
Manuscript received March 15, 2016. 

Bo Liu is with School of Electrical and Automation Engineering, Tianjin 

University, No.92 Weijin Road, Nankai District, Tianjin 300072, China 

( e-mail: liubo@tju.edu.cn ).  

Wenpeng Luan is with China Electric Power Research Institute, Haidian 

District, Beijing 100192, China ( e-mail: luanwenpeng@epri.sgcc.com.cn). 

Yixin Yu is the Corresponding Author with School of Electrical and 

Automation Engineering, Tianjin University, No.92 Weijin Road, Nankai 

District, Tianjin 300072, China ( tel: +86-13602198158; fax: +86- 

022-27892809; e-mail: yixinyu@tju.edu.cn ). 

and dynamic programming algorithm to extract the operating 

state transition sequential patterns of appliances based on the 

results of event clustering. However, genetic algorithm may 

not reach the global optimum, and eventually the learned state 

transition sequential patterns are still needed to be combined 

into the FSM model [4]. The method proposed by Streubel 

and Yang (in 2012) for appliance FSM modelling can only use 

the consumption data generated by a single appliance instead 

of by the total load [5]. Parson et al (in 2014) used the generic 

model (considered as a kind of priori knowledge in this paper) 

of a certain type of appliances to learn the specific load model 

of the appliances of the same kind inside the total load from 

the data collected from the target scenes, however, acquiring a 

generic load model can not avoid the requirement of 

supervised modelling [6]. 

In this paper, we proposed a fully unsupervised appliance 

finite state machine (FSM) modelling framework for NILM. 

Without intruding into the internal load or requiring any priori 

knowledge of the appliance model, the framework takes the 

consumption data of the total load as processing objects, 

automatically establishes the appliance FSM model including 

the complete state set of FSM, topological structure, and 

related model parameters, only according to the load event 

signatures; so it can completely avoid the supervised 

modelling and greatly improve the applicability of existing 

NILM technologies, and lay a foundation for the realization of 

the auto-setup NILM. 

This paper is organized as follows. Firstly, the basic 

principle and flow chart of the proposed framework are 

outlined and presented in Section II. Then the implementation 

methods are described in details in Section III. After that the 

proposed framework is tested on the real measured dataset to 

validate its effectiveness in Section IV. Finally, conclusion of 

this paper and prospects for future work are briefed in Section 

V. 

II. Framework Overview 

The fundamental task in building appliance finite state 

machine (FSM) is to establish the model topology structure 

(MTS), and determine the model parameters. The MTS can be 

expressed by the model topology graph (MTG), as shown in 

Fig.1. In the MTG, the simple cycle is a closed walk with no 

repetitions of vertices and edges, except for the repetition of 

the starting and ending vertex [7]. In this paper, the load event 

sequence generated by any operating state transition process 

which corresponds to a simple cycle of the MTG whose 

number of vertices is more than 1 is called simple cycle event 

sequence (SCES). Building the MTS of an appliance can be 

completed through detecting and combining all the different 

SCES patterns that may be generated by the appliance, from 

the total load consumption data. Based on this, the FSM 

model parameters can be further derived by the statistical 
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analysis of the data and information of the load events related 

to each SCES pattern in the appliance MTS. 
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Fig.1. The FSM model topology graph of a three-state hair drier 

In practical, each consumer has a certain energy 

consumption habits, thus the typical SCES pattern of the 

appliances inside the load can repeat several times in a period 

of time (a week or even a day). For instance, the start-and-stop 

cycle of the refrigerator will happen many times in one day. 

Using the frequent pattern mining techniques, we established 

a fully unsupervised appliance FSM modelling framework, as 

shown in Fig.2. 
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Fig.2. Flow chart of the unsupervised FSM modelling framework 

The framework consists of the following steps: (1) In the 

load event sequence, the isolated load event sequence (IsoES) 

is detected and recorded in the set ΩIsoES (Section III.A will 

introduce the concept and benefits of IsoES); (2) through the 

load event clustering, the load events are labeled with logical 

names prepared for the frequent pattern mining to be carried 

out in the following step (3); (3) according to the logical name 

of the load event, the SCES patterns are mined in the set ΩIsoES 

and recorded in the set ΩSCES; (4) the SCES patterns are 

grouped so that all SCES patterns in one group belong to one 

appliance; (5) the topology of the appliance FSM model is 

generated using the SCES patterns from its group, and the 

parameters are estimated. 

III. Methods 

A. Detection of the Isolated Load Event Sequence (IsoES) 

As the core of the framework proposed in this paper, SCES 

pattern mining can be treated as a problem of frequent 

sequential pattern mining [8], which requires establishing an 

Event Sequence Database (ESDB). This paper takes the 

isolated load event sequence (IsoES) as an event sequence 

record in the Database. IsoES is the load event sequence 

contained in an isolated load window. An isolated load 

window refers to such an operating period of the total load: ① 

the operating state of the total load (referred to as load state in 

the following) before and after this period is the same; ② the 

total active power at any moment within this period is not less 

than that at the initial moment of the period. Fig. 3 shows an 

example of the isolated load window. The past experience 

shows that the total load can always be divided into a number 

of isolated load windows. Obviously, any IsoES is composed 

of several SCESs of several appliances. Therefore, taking 

IsoES as event sequence record in the ESDB can improve the 

efficiency (by reasonably reducing searching space) and 

accuracy of the SCES pattern mining.  

 
Fig.3. The power curve of a three-state hair drier 

IsoES detection method: Here, we define the load event, 

whose active power increment is more than zero as positive 

event, and that less than zero as negative event. Details of the 

IsoES detection method is as follows: 

In the process of load event detection (detected load events 

are fed into the load event sequence, and initially marked as 

“unvisited”), once a negative event is encountered, it is 

marked as initial event for searching. Then forward searching 

is carried out in the load event sequence, until a positive event 

is found that the load state before it is the same as the load 

state after the initial event, and this detected positive event is 

regarded as searching termination event. At this point, 

including searching initial/termination event, load events 

which have been marked “unvisited” between them form an 

IsoES, and all load events in the new IsoES are marked as 

“visited”. During the search, if the total active power before 

(or after) any positive (or negative) event is less than that after 

the searching initial event, then the searching is abandoned, 

and start another similar searching from next negative event to 

be found in the load event sequence. 

Here, the load state is described by the two-dimensional 

vector combining the active power and reactive power. In 

accordance with the described method, load event sequences 

within a period of time for a household can be divided into a 

number of IsoESs, as shown in Fig.4, the "square" and "dot" is 

the start and stop positions of IsoES respectively. For example, 



 

 

 

four IsoESs are contained in the box, according to the 

labelling sequence in the process of detection, they are: < E2, 

E3 >, < E4, E5, E6 >, < E7, E8 > and < E1, E9>. 

E1
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E4

E5
E6

E7 E8

E9

Fig.4. Results of the IsoES detection in the total load 

Further, in this paper the set composed of all detected 

IsoESs during a period of time is denoted as ΩIsoES, and the set 

composed of all load events in all the detected IsoESs is 

denoted as ΩE. 

B. Clustering and labelling of load events 

As described in section III-A, IsoES in the ΩIsoES set can 

serve as the event sequence record in the ESDB. Before 

starting the pattern mining, we also need to label each load 

event in each IsoES with a unique logical name, and it is 

required that all load events generated by a specific appliance 

while experiencing the same state transition process have the 

same logical name, so that the content of ESDB can reflect the 

existence of the SCES patterns. For this purpose, cluster 

analysis techniques were applied to divide ΩE into different 

load event clusters, and the logical name of the load event is 

labeled by the label of the cluster it belongs to. Since the 

number of the load event type is unknown, theoretically, any 

cluster analysis methods not requiring the cluster number as 

the input parameter can be applied to this framework. The 

mean-shift clustering algorithm is adopted in this paper [9]. 

Before the load event clustering, there is a need to describe 

or represent load event with appropriate signatures. In order to 

improve the accuracy of the load event clustering, this paper 

uses vectors (donated as β) combining the fundamental and 

high order harmonic components (3, 5, 7) of active power and 

reactive power increments before and after the event to 

represent load events. 

C. Mining the SCES patterns 

As the conventional representation of event sequence in the 

field of sequence pattern mining, the example of ESDB can be 

simply shown in Table 1. For each IsoES, a unique 

corresponding sequence of (eij, tij) structured by the load event 

information is stored in the database, where, eij represents the 

type label of the j-th load event in the i-th record of IsoES, and 

tij is the timestamp when load event  eij occurred. For instance,  

eij =6 in the Table 1, "6" denotes the logical name of load 

event provided by the clustering analysis in Section III-B. 

Frequent Event Sequence (FES) patterns can be obtained 

through performing frequent sequence mining on ESDB, 

which form a set denoted as ΩFES. In this paper, the classic 

GSP (Generalized Sequential Pattern) algorithm is adopted 

for frequent sequence mining [8]. The GSP algorithm is based 

on the theory of Apriori. It firstly generates a longer candidate 

sequence pattern via bottom-up procedure based on a shorter 

sequence pattern, and then calculates the support of the 

candidate sequence pattern (namely, the frequency that 

sequence pattern occurs), and finally makes comparison with 

support threshold to determine whether the candidate is a 

frequent sequence pattern. For instance, if the support 

threshold value is 2 (the actual value is generally greater than 

this), then the bolded and underlined event sequence whose 

length is 3 shown in Table 1 is a frequent sequence <6,1,2>, 

corresponding sequence of cluster center is <β6, β1, β2>. 

Table1: Example of ESDB used in the proposed framework 

ID of Event 

sequence 
Event Sequence 

1 < (6,t11), (1,t12), (3,t13), (2,t14), (5,t15) > 

2 < (3,t21), (4,t22), (7,t23), (5,t24) > 

3 < (6,t31), (8,t32), (1,t33), (10,t34), (2,t35) > 

… … 

k < (6,tk1), (1,tk2), (9,tk3), (15,tk4), (2,tk5) > 

… … 

However, the mined event sequence patterns in set ΩFES 

aren’t all SCES patterns, therefore, according to the cluster 

center sequence corresponding to the FES pattern, we use the 

constraint of β-ZLSC to filter out all the SCES patterns from 

ΩFES, which results in the set ΩSCES. Here, β-ZLSC takes 

higher order of harmonic power into consideration in addition 

to the total power which is originally suggested by Hart [1], 

where the vector β , representing the vector describing the 

load event as mentioned in Section III-B, is treated as a prefix 

to show the difference. 

D. Grouping of the SCES patterns 

For multi-state appliances such as microwave oven and hair 

dryer, they can produce more than one SCES patterns. 

Therefore, it is necessary to divide the set ΩSCES into different 

SCES pattern groups based on the correlation between 

patterns, making each SCES pattern group associate with one 

specific appliance. In this paper, the Event Correlation Rule 

is used to group the SCES patterns, which means that, 

considering the fact that the load events produced by different 

appliances are different, if different SCES patterns share the 

same type of load event(s), they are considered to be 

generated by the same appliance and can be grouped into one 

group. 

E. FSM model topology generation and parameter 

estimation 

To achieve the appliance FSM modelling, it requires 

combining the elements of acquired group of the SCES 

patterns into the FSM model topology and estimating related 

parameters, for which we proposed an algorithm called the 

Incremental Topology Generation and Parameter 

Estimation (ITGPE). The details are as follows. 

1) Randomly select a SCES pattern in the group to form a 

single-cycle MTG whose edges correspond to the load events 

in the SCES pattern. The reference powers of the edges are 



 

 

 

initially marked by the active/reactive power increments of the 

cluster centers corresponding to type of the load events, and 

then they are fine-tuned to satisfy the ZLSC constraint with 

their sum(can be called “residual power”) equally shared with 

each event of the SCES (same as follows). After that randomly 

assign a vertex in the cycle as zero-state vertex, whose 

reference power is set to 0, while the reference powers of the 

other vertices can be marked by summing the reference 

powers of the edges along one path from the zero-state vertex 

to the vertex to be marked (same as follows).  

2) Randomly select a next SCES pattern, and in the formed 

MTG, add new edges and the vertices associated with new 

load event type introduced by the new SCES pattern. Mark the 

initial reference powers for the new edges as above and then 

tune them with that of the marked edges fixed (same as 

follows). After that mark the reference powers for the new 

vertices Repeat this procedure until all SCES patterns in the 

group are accessed. 

3) Assign the vertex with the minimum reference power in 

the MTG to be the new zero-state vertex, subtract the 

reference power of the new zero-state vertex from that of all 

the vertices, and mark all vertices whose reference power is 

not zero as different logic states. 

4) Based on the established FSM model topology, the 

acquired reference power of the vertex is taken as the power 

mean parameter of the corresponding operating state of the 

appliance and  the power variance parameter can be estimated 

by the sum of the power variance of the events directly related 

to it that can be derived from the clustering result. 

If necessary, the probability parameters of state transition 

of FSM model can be estimated by the timestamp record in the 

ESDB of all the events generated by the appliance[10][11]. 

IV. Experiments 

The proposed framework is tested with the consumption 

data for 24 hours from a real household on Saturday and the 

power data was sampled at 1Hz. Firstly, using the method 

suggested in Section III-A, the number of IsoESs detected is 

76. Here the event detection method proposed by Hart is 

adopted and the power change “tolerance” is set as 50W [1]. 

According to Section III-B, the results of load event clustering 

are shown in Table 2. As only the event cluster whose number 

of elements is greater than the support threshold (here set to be 

3 for the duration of the dataset sampled is relatively short) is 

meaningful for frequent pattern mining, only the clusters with 

more than 3 elements are listed in the table, and △P represents 

the active power increment of the cluster center. Based on the 

load event clustering, 6 SCES patterns are detected; the results 

are shown in Table 3. Furthermore, according to Section III-D, 

No. 3 and No. 6 SCES patterns belong to one three-state 

appliance. Finally, according to the ITGPE algorithm in 

Section III-E, 5 appliance FSM models are established. Take 

the No.3 appliance “Hair drier” in Table 4 as instance, first, a 

single-cycle MTG corresponding to the No.3 SCES <12,3> in 

Table 3 is established, after that the No.6 SCES <10,5,3> 

introduce two new edges and one new vertex eventually 

forming the final MTG. Then the related parameters including 

the mean(μ) and standard deviation(σ) of the active power and 

reactive power of each state are estimated as shown in Table 4. 

Table 2: The results of load event clustering 

Cluster 

label 
△P(W) 

No. of 

elements 
Cluster 

label 
△P(W) 

No. of 

elements 

1 -3101 5 9 -585 18 

2 1145 25 10 496 4 

3 -1009 15 12 1011 13 

4 781 4 14 -762 4 

5 513 4 15 609 18 

8 -1130 24 17 3142 5 

Table 3: The results of SCES pattern mining 

ID of SCES 

pattern 
SCES (cluster label, see Table 2) 

Frequency of 

SCES pattern 

1 2 8 — 23 

2 4 14 — 4 

3 12 3 — 12 

4 15 9 — 16 

5 17 1 — 5 

6 10 5 3 4 

Table 4: The results of FSM model parameters 

ID of 

appliance 
μ(W) σ(W) 

Appliance 

name 

1 {0,1138/298} {0,22/23} 
Microwave 

oven 

2 {0,772/1} {0,11/2} 
Electric 

oven 

3 {0,496/-56,1009/-4} {0,9/19,19/3} Hair drier 

4 {0,597/147} {0,21/8} 
Vacuum 

cleaner 

5 {0,3122/-8} {0,13/11} 
Electric 

Heater 

V. Conclusion 

In this paper, we proposed a fully unsupervised appliance 

finite state machine (FSM) modelling framework for NILM. 

The realization of different function modules is described, and 

the effectiveness of the proposed framework is validated by 

experiments in a real household. Without intruding into the 

internal load or requiring any priori knowledge of the 

appliance model, the framework can automatically establish 

the topological structure of appliance FSM model and 

estimate the associated model parameters, so it can improve 

the applicability of the existing NILM technologies, and lay a 

foundation for the realization of the auto-setup NILM. 

The framework proposed in this paper will be tested and 

analyzed on more measured datasets, and the methods and 

techniques used by different functional modules of the 

framework will be continuously optimized. 
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