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Abstract—Energy disaggregation helps to identify major en-
ergy guzzlers in the house without introducing extra metering
cost. It motivates users to take proper actions for energy saving
and facilitates demand response programs. To increase the
accuracy of energy disaggregation results and reduce the compu-
tational complexity, we make use of the occupancy information
(whether or not the house/room is occupied by users) and split
the whole time interval into occupied and unoccupied periods.
In unoccupied periods, we apply simple energy approximation;
in occupied periods, we perform energy disaggregation with
existing methods. Real-world experiments are conducted in an
apartment hosting most typical household appliances. Compar-
ing with energy disaggregation without considering occupancy
information, our occupancy-aided approach can significantly
reduce the computational overhead while ensuring the accuracy
of energy disaggregation.

I. INTRODUCTION

To effectively cut down the electricity bill for the customers
as well as facilitate demand response (DR) programs for the
utilities, it is meaningful to monitor the energy consumption to
appliance level in residential houses [1]. Energy disaggrega-
tion, also known as non-intrusive load monitoring (NILM),
aims to identify major energy guzzlers by referring to the
measurements only from a single meter of the household . As
no extra metering cost is incurred, the technique is regarded as
the cheapest way to obtain appliance level energy information
and has been well explored since 1980s [2].

Because of the cost saving, energy disaggregation has drawn
tremendous efforts and investments from both academia and
industry, and a broad spectrum of approaches have been
attempted [3], [4]. Generally speaking, there are two major
categories of approaches to energy disaggregation: i) signature
based event identification [5], [6], [7], [8] and ii) state transi-
tion based likelihood estimation [9], [10], [11]. Recently, there
are also methods utilizing particular features of appliances
activities, such as the state transition sparsity [12], [13].

While broadly investigated, energy disaggregation is still
challenging and has much room to improve. As one of the key
problems, the computational complexity of energy disaggrega-
tion is usually high. For the first category of approaches based
on appliances’ signatures, it has to traverse the whole load
curve to search for the appliance signature one by one [5], [6].
Methods in the second category based on state transition, such
as hidden Markov model (HMM) as well as its variants, are
NP-hard when they discover the most likely state sequences
of appliances [9], [10]. Consequently, approximations and
heuristics were developed to reduce the complexity, leading
to less accurate results.
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Fig. 1. Correlation between appliances’ activities and the occupancy states
of the house. Occupied periods of the house are illustrated by shaded areas.

Is there any way that can reduce the computational complex-
ity while still ensuring the accuracy for energy disaggregation?
In a typical household, the occupancy states (whether someone
is at home) play a significant role in energy consumption. As
a real-world case shown in Fig. 1, we can observe that: i) most
appliances’ activities are triggered during occupied periods of
the house; ii) there are quite few appliances (only one in our
case) running in unoccupied periods of the house. Therefore,
when performing energy disaggregation, we can focus on the
occupied periods while roughly estimate the energy consump-
tion of certain appliances running in unoccupied periods. By
cutting out the unoccupied periods from the whole time inter-
val, we can significantly reduce the computational complexity,
especially when the unoccupied periods are dominated.

In this paper, to reduce the computational complexity of
energy disaggregation while ensuring its accuracy, we develop
an occupancy-aided energy disaggregation routine based on
occupancy state inference for a house/room. Specifically, we
first infer the occupancy states of the house/room based on
the analysis of collected load curve data; then by applying
occupancy inference, we provide energy approximation for
the appliances running in the unoccupied periods, and per-
form energy disaggregation for the appliances working in
occupied periods. Real-world experiments are conducted to
validate the effectiveness of the occupancy-aided approach.
With datasets collected from an apartment, we preliminarily
demonstrate that our occupancy-aided approach can much
reduce the computational overhead with ensured accuracy of
energy disaggregation.

II. OCCUPANCY-AIDED ENERGY DISAGGREGATION

In this section, we first introduce our framework for
occupancy-aided energy disaggregation, which consists of
three major steps given the aggregated load curve data: oc-
cupancy inference, energy approximation, and energy disag-
gregation, as shown in Fig. 2.
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Fig. 2. Framework of occupancy-aided energy disaggregation.

Based on the collected aggregated load curve data (power
consumption signal in this paper) of a house, we first infer
the occupancy states of the house by analyzing load curve
variations (Sec. II-A). According to the inferred occupancy
states, we estimate the energy consumption for the (quite few)
appliances working during the unoccupied periods by referring
to coarse-grained power information (Sec. II-B). Meanwhile,
we perform energy disaggregation for the appliances running
in the occupied periods (Sec. II-C). Eventually, we get the
appliance-level energy consumption during the whole time
interval.

A. Occupancy Inference using Load Curve Data

There are tremendous approaches to occupancy inference
that are based on either intrusive or non-intrusive sensing.
To avoid extra sensor deployment in intrusive sensing (e.g.,
PIR/motion sensor, acceleration sensor or camera), we apply
the non-intrusive one based on load curve data analysis that
was developed in [14].

We first evenly divide the whole time interval (e.g., one
day) into smaller time windows. Considering a time window
T starting from time 1 to n, we represent the aggregated power
readings! of a house by the following vector:

x = [T, T2, -, 2,7, (1)

Thus, the ¢t-th (1 < t < n) element of x denotes the aggregated
power value of the house at time ¢. Then, three metrics are
defined to infer the occupancy states of the house in 7:

o Average power value: Ng,q := avg(x);

o Standard power deviation: Ngq := std(x);

o Power range: N,  := max(z) — min(z).
Then, the occupancy state o (which is a binary variable) of
the house in 7 is determined by the following conditions:

0, = {1» if Navg > Pavg or Nstd > Pstd or Nrng > Prng
0, otherwise.

(2)

where P, 4, Pstq and P4 represent the predefined thresholds

for average power, power deviation and power range, respec-

tively.

'In this paper, we make use of the real power signal while the applied
principles can be adapted to other signals such as the current.

B. Energy Approximation in Unoccupied Periods

We have observed that there are quite few appliances
running during the periods when the house is unoccupied, as
shown in Fig. 1. Those appliances that are left running in the
unoccupied periods are usually “always-on” appliances, such
as refrigerator and water cooler/heater.

To estimate the energy consumption of these appliances,
we simply use the metric of energy consuming rate, such as
hourly energy usage. This metric is provided by the user’s
manual or technique specifications, and is usually evaluated by
the ENERGY STAR agency [15]. If such information is not
readily-available, we can easily estimate it via simple devices
such as the plug-in power meters. Without interference (ap-
pliances usage) of customers, the evaluated metric is actually
quite accuracy. For example, in our evaluation, the accuracy of
energy approximation in the unoccupied periods using hourly
energy usage is as high as 87%.

Considering an always-on appliance (indexed by k) with
energy consuming rate r, we can approximate the appliance’s
energy consumption e during the unoccupied periods 7 as:

er =1k x [T}, 3)

where |7| denotes the total length of the unoccupied time
periods.

Then, with the priori knowledge of all the always-on ap-
pliances (either provided by the vendors or measured by the
customers), their energy approximation during the unoccupied
periods can be easily calculated.

C. Energy Disaggregation in Occupied Periods

To disaggregate energy for appliances in the occupied
periods, we need disaggregation models/approaches. Since
our focus in this paper is to investigate the contribution of
occupancy information to energy disaggregation, we just adopt
existing approaches instead of developing new ones.

Three different energy disaggregation approaches are imple-
mented for our testing: the signature based approach using the
Least Square Estimation (LSE) model [8], the state transition
based approach applying iterative HMM model [11], and the
sparse switching event recovery (SSER) model [13].

Preliminaries: Assume that a list of m (major) appliances
appearing in the house is given by the appliance set M (|M| =



m). Considering that most household appliances work under
multiple operating modes, we further assume that appliance %
can work in m; different modes. Then, the rated power (or
mean power) of appliance 7 working under mode j can be
denoted as ugz , and corresponding power deviation can be

estimated as ; @ Thus, the power consumption of appliance ¢

workmg under mode j at any arbitrary instant falls into [ @ _

5(1 ,;L j )+ d; (¢ )] with a high probability. For the (on/off) state
of mode j of appliance ¢ at time ¢, we denote it by s( )( t),
where s( )(t) = 1 if appliance ¢ is running under mode J at

time ¢; 0therw1se 5( )( t) =0.

1) LSE Model: The signature based approach based on
LSE was adopted in [8] for energy disaggregation. The cur-
rent waveform of each appliance was extracted and stored
beforehand, and treated as its signature. In this paper, we
make use of power signal instead of the current waveform.
With aforementioned notations, the LSE model for energy
disaggregation in the occupied periods 7" is formulated as:

2

IT'|
win 3 (5= 3055000
t=1 =1 j=1
s.1. (L)( t) € {0,1}, 4)

S0 <1,
=1

1<i<m,1<j<m;l1<t<|T.

2) HMM Model: As a state transition based method, the
iterative hidden Markov model (HMM) was proposed for
energy disaggregation in [11]. We implement this model in
three phases:

o Modeling phase: each appliance is modelled as a prior
difference HMM, which is defined by:

A:={A, B,~r}, (5)

where A is the prior state transition probability distri-
bution, B is the emission probability distribution, and
7 is the starting state distribution of the appliance. In
particular, i) A is initialized with the transition probabil-
ities proportional to the time spent in each state, and ii)
for any state change between modes j and k of the i-
th appliance, its corresponding emission probability in B
is defined bgr a Gaussian distributed power consumption
N(w (z) k)’(;( i) 5(1)
J
. Tralmng phase: we apply the expectation maximization
(EM) algorithm over the collected load curve data. The
EM algorithm is initialized with the prior state transition
matrix A and individual appliances’ rated power. It termi-
nates when a local optima in the log likelihood function
is found or the maximum number of iterations (100 in
our implementation) is reached.
o Inference phase: the extended Viterbi algorithm shown
in [11] was applied to infer each appliance’s mode

state, considering the constraints of aggregated power and
power changes at each time instant.

3) SSER Model: SSER model was developed in [13] where
the sparsity of appliances’ switching events was applied. With
the notations in preliminaries, the SSER model for energy
disaggregation in the occupied periods 7" is formulated as:

IT'-1 m m;
min Z >
= =1 1

Jj=
st (Ngw 55 (8) < @y < () + 817)s (1),
sO(t) € {0,1}, ©)

S s <
j=1

1<i<m,1<j<m,1<t<|T.

1

st +1) - s(t)

By applying the above energy disaggregation models, we
can get the mode state of each appliance at each time
instant and thus can estimate the energy consumption of
each appliance by referring to its rated power. Since the
length of occupied periods (i.e., |7’]) is expected to be much
shorter than the whole time interval in consideration, the
computational complexity in the disaggregation models can
be much reduced.

III. IMPLEMENTATIONS AND EVALUATIONS

In this section, we implement and evaluate our occupancy-
aided approach for energy disaggregation using real-world
datasets collected from an apartment.

A. Data Collection

We collected the power reading data from an apart-
ment using off-the-shelf measuring devices from Current-
Cost (www.currentcost.com). Two power sensor jaws were
installed at the power entrance to measure the aggregated
power consumption of the apartment. Then, the data were
sent to a sink node and then forwarded to a computer with
frequency of 0.1H z. For evaluation purpose, we also record
individual power consumption of 10 major appliances across
the apartment using plug-in power meters from CurrentCost.
By comparing to the monthly electricity bill, these major ap-
pliances under our consideration, including stove, refrigerator,
microwave, etc., consume over 85% of the total energy.

To find the best occupancy inference parameters, we also
collected the ground-truth occupancy information as the
training dataset. The Google mobile app named Google+
(www.google.com/mobile/+/) was installed on the mobile
phones (with GPS module) of each occupant to gather the
location information, from which we infer whether or not the
occupant is at home. One-week power consumption and occu-
pancy information were collected and used for the inference
training and performance evaluation.



TABLE I
PERFORMANCE RESULTS OF OCCUPANCY-AIDED ENERGY DISAGGREGATION (E.D.) AND RAW ENERGY DISAGGREGATION

Occupancy-aided E.D. Raw E.D.
ED. Model Accuracy Overhead Accuracy Overhead
- Moae (Unoccupied Per./Occupied Per./Overall) (Elapsed time) (Overall) (Elapsed time)
LSE Model 86.89% / 61.07% / 67.52% 383.08 seconds 66.45% 593.71 seconds
HMM Model 86.89% / 78.19% / 80.36% 2110.11 seconds | 79.01%  3103.09 seconds
SSER Model 86.89% / 74.90% / 77.90% 584.83 seconds 76.33% 866.30 seconds
TABLE II IV. CONCLUSIONS

PARAMETER SETTING FOR OCCUPANCY INFERENCE

[ parameter [ notations | setting value |
inference time window T 15 min
average power threshold Payg 125 watts

standard power deviation threshold Psig 72 watts
power range threshold Prng 108 watts

B. Parameter Setting

The detailed power information (rated power and power
deviation) of all appliances under consideration is measured
by the plug-in power meter. To obtain accurate occupancy
inference, we train and tune the inference parameters in
Sec. II-A using the ground-truth occupancy information. The
parameter setting in our experiments is shown in Table II. Note
that in our occupancy inference, the load silence periods (e.g.,
when the occupants are sleeping) are treated as unoccupied
periods.

C. Performance Evaluation

We perform occupancy-aided energy disaggregation follow-
ing the steps in Sec. II and calculate the accuracy in occupied
periods with performance metric in [16]. Moreover, we also
record the accuracy of energy approximation in unoccupied
periods and the overall accuracy in the whole time interval,
respectively. As a comparison, we calculate energy disaggrega-
tion accuracy without following the occupancy-aided process
(which we call raw energy disaggregation). Corresponding
results are summarized in Table I.

To measure the computational complexity of the two energy
disaggregation routines, we refer to running time as overhead
when solving the disaggregation models. All models were
implemented and run under MATLAB 8.5, with PC configu-
ration of 32-bit Windows OS, 3.4 GHz CPU and 4 GB RAM.
Corresponding elapse time is shown in Table 1.

From the results, we have the following observations.

o Comparable Accuracy: The occupancy-aided approach
is slightly more accurate than the raw one, as the energy
approximation in unoccupied periods is quite accurate.

e Much Reduced Overhead: By cutting out the unoccu-
pied periods from the whole time interval, the occupancy-
aided approach is much faster than the raw one. Due to
long unoccupied period in our case, the running time of
each model is reduced by over 30%.

In this paper, we developed an occupancy-aided approach to
cut down the computational complexity of energy disaggrega-
tion. A three-step routine was proposed for occupancy-aided
energy disaggregation: i) occupancy inference using load curve
data, ii) energy approximation for appliances working in unoc-
cupied periods, and iii) energy disaggregation for appliances
working in occupied periods. We evaluated our approach using
the real-world datasets collected in an apartment. To validate
the effectiveness of our approach, we compare it with existing
energy disaggregation methods without utilizing occupancy
information. The results showed that the occupancy-aided
approach significantly reduces the computational overhead of
energy disaggregation without sacrificing accuracy.
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