3RD INTERNATIONAL WORKSHOP ON NON-INTRUSIVE LOAD MONITORING (NILM) 1

Analyzing 100 Billion Measurements: A NILM
Architecture for Production Environments

NIKOLAUS STARZACHER, PHILIPP WEIDMANN
Discovergy GmbH
Sofienstr. 7a
69115 Heidelberg, Germany
Email: nilm@discovergy.com

Abstract—An architecture for Non-Intrusive Load Monitoring
is presented along with a software implementation in the Java
language. Various characteristics of the architecture that make it
suitable for production deployments are discussed. In particular,
a streamlined interface allows load monitoring algorithms to
be developed by third parties without full source code access,
supports both online and offline appliance recognition, integrates
with an adaptive scheduler, and is agnostic with respect to the
recognition approach. The Java implementation has been field-
tested in a commercial, customer-facing application where it
continues to manage NILM operations on more than 100 billion
individual energy measurements.

I. INTRODUCTION

HE integration of Non-Intrusive Load Monitoring

(NILM)[1] technology into production systems presents
formidable challenges beyond the obvious difficulty of devel-
oping correct and performant recognition algorithms.

Practical NILM applications often have to deal with miss-
ing or incomplete measurements, near real-time business re-
quirements for recognition results, tight bounds on execution
time, limited measurement consistency and temporal reso-
lution compared to the laboratory environment, as well as
implementation-specific storage and retrieval issues for both
measurement and recognition data. Given these obstacles, it
comes as no surprise that customer-facing NILM technology
consistently fails to live up to the promises of NILM research.

This paper describes a system that aims to solve these
and other common problems by abstracting away as many
standard tasks as possible into the infrastructure. The result
is a modular application that can integrate “raw” algorithms
of the kind encountered in academic publications with little
additional code. Once an algorithm has been adapted to use the
system’s interfaces, execution scheduling and output storage
are managed automatically. This high-level approach parallels,
but is distinct from, the NILM Toolkit (NILMTK)[2]. Whereas
NILMTK provides a standardized development environment
for NILM algorithms with data parsing, preprocessing and ac-
curacy metrics, our architecture is the production counterpart,
comprising all that is needed to integrate a pre-tested algorithm
into an energy monitoring application.

II. DESCRIPTION OF ARCHITECTURE
A. The algorithm concept

In its most basic form, a NILM algorithm is a function that
takes a list of measurements and returns a list of recognition
events. Our interface augments this concept with two addi-
tional parameters and return values that facilitate computation
and integration (Figure 1).

T

Measurements

Execution
State

Metadata

NILM
Algorithm

New
Execution
State

New
Metadata

Recognition
Results

Fig. 1. An algorithm receives measurements, execution state and metadata
for a metering endpoint and generates recognition results along with a new
execution state to allow resumption of measurement processing. The algorithm
can also update the metadata to share data with other algorithms.

1) Endpoint metadata: The metadata parameter passed to
the algorithm captures any information about the metering
endpoint that is independent of the energy measurements.
Examples of useful metadata include a pre-populated list of
appliances in the household being analyzed, the number of
rooms and people in the household, the floor area, and human
feedback on previous recognition results. Such information



3RD INTERNATIONAL WORKSHOP ON NON-INTRUSIVE LOAD MONITORING (NILM) 2

may have been provided directly by the household owner, and
thus can serve as a “ground truth” for sanity checks performed
by the algorithm itself.

What distinguishes metadata from measurements is that
only one metadata object exists per endpoint at any given time,
representing the system’s best knowledge about the endpoint
available thus far. In particular, the same metadata is provided
to every algorithm analyzing the endpoint. An algorithm can
also return an updated metadata object to make summarized
NILM insights available globally. This allows algorithms to
share information independent of the recognition approach.
For instance, a refrigerator detecting algorithm might store the
total number of refrigerators in the household as a metadata
value, which can then be read by another disaggregation algo-
rithm to simplify preprocessing by excluding certain appliance
configurations a priori.

2) Processing state: A modern smart electricity meter with
a measuring interval of a few seconds generates millions of
individual readings every year. Even with a lot of computing
power, processing such quantities of data in a single run
requires more resources than can usually be allocated when
there are thousands of other datasets waiting in the processing
queue.

For this reason, a practical NILM architecture must neces-
sarily support splitting the analysis of a set of measurements
into multiple invocations of the algorithm. As a side effect,
this automatically covers the important use case of online
appliance recognition, where recognition results are generated
while an appliance is still active, or shortly after it is turned
off. Online recognition is achieved by feeding individual
measurements to the algorithm as soon as they arrive, and
processing the results immediately.

But splitting a computation into blocks is a non-trivial task.
The main issue is that an algorithm might depend on a charac-
teristic complex feature being present in the load profile, such
as a refrigerator’s cooling cycle. Unless the complete feature
is found during a run, it might not be possible to accurately
identify the appliance without additional information.

Our system solves that problem by having algorithms return
a processing state that encodes partial matches at the end
of the measurement timeline that could not be fully resolved
during the current invocation. When the algorithm is executed
again with a batch of measurements immediately succeeding
those in the previous run, that state is passed as a parameter,
allowing the computation to continue where it left off. The
contents of that state object are specific to each algorithm, and
may differ widely between algorithms. Indeed, the most naive
state object just contains all measurements from all previous
runs, but far more efficient state representations are possible
in many practical cases. For an algorithm identifying when an
individual appliance was running, the state might be reduced
to a flag specifying whether the appliance was on or off at the
end of the preceding run. If tracking of partial matches is not
required or the measurement batches are sufficiently large, the
state object can be entirely empty.

B. The processing cycle

As there will usually be multiple algorithms to be run,
a pipelining approach can be employed to reduce the total
amount of measurements that need to be loaded. This is
important because disk I/O from loading measurements for
analysis is often the performance bottleneck of the entire
analysis operation.

At a point in time, different algorithms may have pro-
cessed different subsets of the measurement data available for
a metering endpoint. Since most NILM algorithms process
measurements in time-ascending order, the progress for each
algorithm can be described by the timestamp of the latest
measurement the algorithm has processed thus far. By taking
the minimum of these timestamps over all algorithms for a
given endpoint, one obtains the lower boundary of a time
interval that covers all of the intervals required for each
algorithm to proceed (the upper boundary of that interval
varies, but is typically just the current time, or the timestamp
of the latest available measurement).

Thus the system can first load all measurements contained
in the aforementioned time interval from the data store, slice
the resulting list as prescribed by the individual algorithms’
continuation states, feed those slices (along with the states
themselves) to the algorithms, and then store the recognition
results and updated state objects. This [/O-minimizing strategy
is referred to as a processing cycle (Figure 2).

Measurements

Slice 1

Algorithm 1
Metadata

Slice 2

Results 1

per-sist
v

Algorithm 2

Metadata Results 2
pel:sist
v

Fig. 2. Slices from a single set of measurements are passed to multiple
algorithms depending on their processing state. Metadata generation is chained
to avoid merging.

It should be noted that while the distribution of a me-
ter’s measurements to multiple algorithms could readily be
parallelized, parallelism across meters (that is, having one
parallel unit execute all algorithms on a single meter’s data



3RD INTERNATIONAL WORKSHOP ON NON-INTRUSIVE LOAD MONITORING (NILM) 3

sequentially) should probably be preferred instead. The reason
is that after separating the retrieval of measurements from the
processing (algorithmic) stage, that stage will easily saturate
the available CPU/GPU power when pipelining thousands of
meters, enabling the integration with an adaptive execution
scheduler that takes system load metrics into account (see
following section). Additionally, serializing algorithm runs for
each endpoint eliminates the need for metadata merging, as
each algorithm consumes the preceding algorithm’s metadata
object and in turn feeds metadata output to its successor. There
is never more than one current metadata object per endpoint.

III. IMPLEMENTATION DETAILS

Our production implementation of the architecture described
above uses the Java language. The following are simplified
versions of the actual interface and base classes (illustrative
only, not intended as functional code):

interface Algorithm<O extends Output,
S extends State> {
RunResult<O, S> run/(
List<Measurement> measurements ,
S state ,
Metalnformation metalnformation);

}

class Output {

long startTime;

long endTime;

// To be subclassed depending on algorithm
}

class State {
// To be subclassed depending on algorithm
}

class RunResult<O extends Output,
S extends State> {
List<O> outputs;
long startTime;
long endTime;
S state;
Metalnformation metalnformation ;

}

class Measurement {
long time;
Map<String ,
}

Object> values;

class Metalnformation {
Map<String , Object> values;

}

A. Automatic serialization of output

Like the measurements themselves, algorithmic results
should be stored in a database to make them available for
other applications, such as serving them over a web APL. This
is readily accomplished using any serialization framework that
just blindly iterates over the Output subclass fields.

However, explicitly declaring the startTime and
endTime fields as shown above and treating them separately
during serialization has two advantages. First, a temporal
index can be generated to support fast lookups of recognition
results, which is crucial when displaying NILM output in
a user-facing application. Second, algorithms can generate

speculative output. For example, an algorithm could identify
a feature at the end of the current timeline as the possible
start of a refrigerator’s cooling cycle. It then generates a
Refrigerator object (subclass of Output) representing
the partial recognition event (and in particular capturing the
beginning and speculative end of the cycle in startTime
and endTime, respectively). This object can be stored for
later use just like a complete recognition event would. If
the next run of the refrigerator detection algorithm, having
received additional measurements, determines that the “partial
cooling cycle” was in fact the beginning of a full cycle (or
that it was not), it can update previous output by making the
RunResult’s start/endTime interval contain the partial
cycle. Algorithms need not be conservative about generating
recognition data even at low confidence levels, because any
speculative output that later turns out to be incorrect can be
adjusted or deleted retroactively. This allows NILM results to
be persisted, and thus made available to the end user, almost
as soon as they are generated, strengthening the “live” aspect
of the system.

In summary, I/O proceeds as follows for a single algorithm:

1) New measurements, the previous processing state and
the current metadata object are loaded.

2) The three are passed to the Algorithm implementa-
tion’s run method, yielding a RunResult object.

3) The RunResult’s new processing state
(algorithm/endpoint-specific) and metadata object
(endpoint-specific) are persisted appropriately.

4) All previously persisted (algorithm/endpoint-specific)
output objects that fall within the RunResult’s
start/endTime interval are deleted.

5) The RunResult’s output objects are persisted.

B. Adaptive execution scheduling

The component deciding which algorithms to run, when to
run them and in what order, which endpoints’ data to run them
on and how much of that data to process during a single run
is referred to as the execution scheduler.

Such a scheduler might take several forms, some of them
very simple. The most basic solution consists of a loop that
loads each metering endpoint’s new measurements, feeds them
to all algorithms, persists the results, and then repeats that
process. Another possibility would be to leverage the operating
system’s job scheduling facilities, such as cron on Unix[3],
in order to ensure each meter’s measurements are regularly
analyzed.

In production NILM systems, however, there are usually
multiple constraints that necessitate a more sophisticated ap-
proach. Most importantly, resources are limited and must
be prioritized based on whichever combination of metering
endpoint, algorithm and measurement subset is most needed
at a given moment. Scheduling criteria might include:

e The duration since an algorithm/endpoint pair was last
processed. This is probably the dominant criterion and is
easily implemented using a standard priority queue.

o The likelihood for individual algorithms to generate use-
ful output from the latest data. Most refrigerators will



3RD INTERNATIONAL WORKSHOP ON NON-INTRUSIVE LOAD MONITORING (NILM) 4

average at least one cooling cycle per hour, but a washing
machine might run only once per week.

o The potential impact of a delayed recognition event.
Missing a hot plate accidentally left on can be dramati-
cally worse than failing to detect a light switch in a timely
manner.

o The average duration of a successful recognition event.
If a pool pump typically runs for five consecutive hours
and the algorithm designed to detect it just executed
without returning a result, there is no need to check again
immediately afterwards.

o The current system load. High load might mean lower-
priority analyses should be rescheduled to run at a later
time.

o Customer interaction with endpoint data. While a cus-
tomer is logged into the application, it makes sense to
prioritize their endpoint(s) to deliver information to the
frontend faster.

C. Algorithm chaining

Traditional NILM algorithms normally expect time series
of raw (power) measurements as input.[4][5][6] Algorithms
designed for very complex tasks, such as determining how
many people are likely to be present in a household from the
electricity consumption alone, can benefit from working with
other algorithms’ output instead. This leads to the idea of
algorithm chaining.

At a minimum, an architecture supporting chaining has to
replace the list of measurements in the Algorithm inter-
face’s run prototype with a list of generic input data points:
interface Algorithm<I extends Input,

O extends Output,
S extends State> {
RunResult<O, S> run(
List<I> inputs ,
S state ,
Metalnformation metalnformation);

}

class Input {
// To be subclassed depending on algorithm
}

Additionally, the actual algorithm chains to be executed
must be defined. An example of such a chain could be an
algorithm detecting basic heating elements via their thermostat
signature, followed by an algorithm identifying compound
appliances containing such elements, like dishwashers, ovens
and washing machines, and finally and algorithm turning high-
level appliance recognition events into an activity profile for
the entire household.

Chaining is a potentially powerful approach but also in-
troduces new complexities into the system, namely storage of
intermediate data, validation of results, and chain management.
As such, chained algorithms have not yet found their way into
our production architecture.

ACKNOWLEDGMENT

Our colleague SERGIU HLIHOR was instrumental in the
implementation of the system described herein, particularly

the scheduler, and fine-tuning its performance to the charac-
teristics of our analysis servers.

REFERENCES

[1] G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the

IEEE, vol. 80, no. 12, pp. 1870-1891, 1992.

N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers,

A. Singh, and M. Srivastava, “NILMTK: An Open Source Toolkit for

Non-intrusive Load Monitoring,” in Fifth International Conference on

Future Energy Systems (ACM e-Energy), Cambridge, UK, 2014.

IEEE and OpenGroup, ‘“crontab - schedule periodic background

work,” 2001. [Online]. Available: http://pubs.opengroup.org/onlinepubs/

9699919799/utilities/crontab.html

[4] C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford, and
P. Armstrong, “Power signature analysis,” Power and Energy Magazine,
IEEE, vol. 1, no. 2, pp. 56-63, 2003.

[S] M. Zeifman, C. Akers, and K. Roth, “Nonintrusive appliance load
monitoring (nialm) for energy control in residential buildings: Review
and outlook,” in IEEE transactions on Consumer Electronics. Citeseer,
2011.

[6] M. L. Marceau and R. Zmeureanu, “Nonintrusive load disaggregation
computer program to estimate the energy consumption of major end uses
in residential buildings,” Energy Conversion and Management, vol. 41,
no. 13, pp. 1389-1403, 2000.

[2

—

[3

—_


http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html

	I Introduction
	II Description of Architecture
	II-A The algorithm concept
	II-A1 Endpoint metadata
	II-A2 Processing state

	II-B The processing cycle

	III Implementation Details
	III-A Automatic serialization of output
	III-B Adaptive execution scheduling
	III-C Algorithm chaining

	References

