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Abstract—Non-Intrusive Appliances Load Monitoring systems
are crucial for augmenting virtuous energy saving behavior and
providing residential energy monitoring solutions. NILM is aimed
to accurately account for energy costs and load distribution by
reporting where exactly the energy is going and what kind of
devices are using it. To address this issue, much of existing
methods require a lot of time consuming training, complex
optimization algorithms and does not focus on the actual energy
estimation problem rather concentrate on classification problem.
In this paper, we propose a simple active window based NILM
(AWB-NILM) approach that relies on an unsupervised localized
events clustering, pairing and self-learning using automatic
evolutionary clustering methods. We have tested our approach
on a real residential power consumption data. The F-measure
attained by the event detector is 94.6%. In this paper we showed
accuracies of appliance events correctly classified and energy
correctly assigned.

Index Terms—Non-intrusive appliance load monitoring, Ac-
tive window, Geometric features, Genetic algorithm, Automatic
clustering.

I. INTRODUCTION

In recent times, utility companies have shown keen interest
in NILM and are making efforts for the implementation and
deployment of smart meter and smart grid technologies so as
to harness their many fold advantages as these technologies
play a vital role in achieving advanced energy billing systems
and increase the energy usage feedback to both utilities and
customers. NIALM, a.k.a NILM was pioneered by G. Hart
[1], in which an aggregate usage of active and reactive power is
used to identify when appliances are turned on/off and estimate
their energy usage. Identification as well as monitoring of
each appliance is made possible by using unique signatures
from each type of devices. Hence, employing such systems
would enable utilities to have effective demand and supply
management and customers to avoid wasteful practices.

A nice review of the different NIALM approaches can be
found in [2] and [3]. Besides, several NIALM implementation
approaches exploit various appliance features, [8] – [10], for
instance the active and reactive power, the harmonic distortion,
the transient behavior, and even the voltage distortion in order
to obtain unique and typical characteristics of appliances but
they require a high sampling rate in the order of kHz.

In our ongoing research, we propose an event-based NILM
technique using simple events detection, feature extraction,

and AWB-clustering suitable for energy disaggregation of the
most energy-consuming devices based on active and reactive
power measurements taken at 1 Hz at the mains entry using
our own Ned-meter, a smart meter prototype built by us. We
also provide evaluation results of the event detector as well as
disaggregated energy estimation.

The organization of the paper is as follows. Section II
gives a brief review of background. Section III provides
the descriptions of the event detection, feature extraction,
AWB-clustering, transition matching and energy estimation
of appliances. In Section IV the experimental results along
with the bench mark quality metrics are described. Lastly, in
Section V conclusive remarks on the current work as well as
future research path is presented.

II. BACKGROUND

Almost two decades back Hart [1] proposed a method for
dis-aggregating electrical loads by examining only the appli-
ance specic step-like changes present in the aggregate power
consumption. Moreover, several event detection techniques
have been proposed [4], [5]– [6]and steady-state and transient
event-based feature mining approaches are developed so as to
typify the detected events.

Similarly, researchers [6], [12] have used real power as a
solo feature to dis-aggregate large-power consuming appli-
ances and seem to ignore low power devices. In [9] disag-
gregation using simple power model and the sparsity property
of appliance activities is proposed nevertheless the types and
the number of appliances in a house are known a prior.

III. EVENT DETECTION, FEATURE EXTRACTION AND
MATCHING

A typical event-based NIALM system incorporates event
detection, feature extraction, classification (appliance label-
ing), and disaggregated energy estimation. Descriptions of the
algorithms are discussed in the following subsections.

A. Event Detection
In the event detection stage, the electrical signal is split-

up into contiguous and transient data points. The proposed
event detector has low complexity and is able to suppress noisy
data points by specifying the minimum time duration of the
contiguous power levels and applying a smoothing filter.



1) Contiguous Level Detector: In this contiguous level
detector, aggregate power signal is preprocessed using median
filtering of length 10 samples and is valid for the 1Hz sampling
rate. This is a good compromise to keep relevant spin cycles
of a washing machine and remove noisy spikes from TVs
because measurement readings are affected by noise so as
to get smoother signal and produce accurate abrupt edges. It
then computes the difference δX , i.e. ∆p/∆t, of the aggregate
consumption in order to obtain the contiguous and transient
levels of the power signal. So given a time series of both
aggregate real and reactive power consumption X(1 : T ) of
length T ,

δX(t) =
{
X(t+ 1)−X(t), for t = 1 : T − 1. (1)

It then further labels the data points in δX(t) as contiguous
and transient based on a specified threshold which in this case
is 30 Watts. The binary vector a(t) defines the labeling as:

a(t) =

{
1, if −Thr ≤ δX(t) ≤ Thr.
0, otherwise.

(2)

In equation (2), 1 indicating the portion of the time series
data is contiguous representing steady state portions and 0
corresponds to transient portions due to rising and falling
edges.
Finally, the contiguous level detector obtains ω, the starting
and ending time of each steady state power levels, using the
algorithm in 1. In here, NumZeros represents the minimum
span length of a power level which in our case is 5 seconds
and Isabove is a flag indicating whether we want to get start
and end of steady states or transient segments.

Algorithm 1 Get start and end times of contiguous power
levels
Data: a(t), NumZeros, Isabove
Result: ω
belowThr = [0 a(t) 0]
edge = diff(belowThr)
rise = find(edge == 1)
fall = find(edge == -1)
spanWidth = fall - rise
if Isabove then

wideEnough = spanWidth ≥ NumZeros
else

wideEnough = spanWidth ≤ NumZeros
end
start = rise(wideEnough)
end = fall(wideEnough)-1
ω = [start;end]’

2) Background and Active Segment Labeling: In this stage,
sections of the filtered P and Q components of the ωi

′s
obtained in section III-A1 are labeled as either background or
active segments. To achieve this, first the normal distribution
of each contiguous power level is computed in order to get the
µi and σi of each steady state segments. This results in a six
dimensional feature vector of [tstarti, tendi, µ

P
i , µ

Q
i , σ

P
i , σ

Q
i ]

where tstarti and tstarti represent the star and end time index
of the ith power level.

A background-level is a a power level during which either
standby or permanently on devices are operating and there is
no detectable abrupt changes. Since the type of appliances
being installed in households is not known a priori and
not deterministic due to the fact that end users can change
appliance or connect completely new device. So estimating
the background power as the sum of standby powers of
surveyed appliances may not be accurate. Hence, should be
determined from the aggregate electrical signal. To better
estimate a more realistic background power, we propose to
cluster the contiguous power levels, µPi

′s, using automatic and
fast algorithms.

In our approach we utilized automatic clustering namely
differential evolution(DE) algorithm originally proposed by
[13] which is a very simple, yet very powerful and useful
algorithm. The main advantages in DE are: it does not require
number of clusters a priori, make few or no assumptions about
the problem being optimized, does not require the optimization
problem to be differentiable, and has self-adaptive mutation
scheme. Applying DE to the µPi

′s, the cluster members, ck,
of each µPi

′s is obtained. Finally, the labeling, `, of the steady
state power segments is achieved based on the cluster member,
ckµmin

, of the minimum µi as follows.

`i =

{
1, if ckµi

= ckµmin
.

0, otherwise.
(3)

Hence, the background power is obtained as,

Pbgrnd = mean(µi | ckµi
= ckµmin

) (4)

3) Active Window Detection: The power consumption of
a household varies over time depending on the activation
of individual devices used by the occupants. In here, active
windows are defined as the time periods in the aggregate
signal over which the power stays well above the reference
background power that is observed as a result of activation of
single or multiple appliances. Once labeling of the steady state
segments is done as in equation 3, the starting and ending time
of active window periods are obtained by looking for portion
of the aggregate signal surrounded by two background levels.
Hence, the set of active windows, aw, are defined as:

aw = {aw1, aw2, ..., awk | awk = [tkstart, t
k
end]} (5)

where k corresponds to the number of active windows de-
tected, tkstart and tkend correspond to the starting and ending
time of the kth active window respectively.

For instance Figure 1 depicts the aggregate power consump-
tion of a pilot residential house taken by our smart meter
over a course of one day. As can be seen from the plot, the
blue contiguous segments represent active windows of single
appliance operation surrounded by two background power
levels and the red segments correspond to active windows
in which the observed power curve is the result of either
the operation of multi-state or multiple appliance in parallel.



Fig. 1. This figure shows the detected activity windows(single or multiple ap-
pliances) and background level of portion of an aggregate power consumption
of a household.

The proposed approach is capable of labeling and obtaining
activity windows due to single device operation automatically
and lends itself to a simplified localized clustering and events
pairing approach. In here, events are defined as the transition
between two consecutive contiguous data segments.

B. Feature Extraction

In this section, features are extracted from each transient
portions of the original unfiltered signal. Relevant features are
the power change ∆(P,Q) and the geometric features, δϕ, of
the transient spikes on both real and reactive power.

1) Geometric Features: Geometric features are set of fea-
tures that characterize the shape of a particular spike such
as: positive and negative peak power amplitude, spike width,
spike gradient, peak to peak power amplitude, and the peak
amplitude to ∆(P,Q) ratios as shown in Fig. 2 and is extracted
from the slope signal in Equation 1 around each event.

δϕ = {δX+
peak, δX

−
peak,

δX+
peak

δX−peak
,
δX+

peak

∆P
,
δX+

peak

∆Q
,∆τspike}

(6)

TABLE I
EXTRACTED VALUES OF THE DIFFERENT TURN-ON FEATURE

PARAMETERS.

Event tup δϕ(1) δϕ(2) δϕP (3)δϕQ(3)δϕ(4) δϕ(5) δϕ(6)

1 3022 1097.0 -1002.9 1.09 1.11 13.64 10.70 6
2 8133 1092.2 -995.1 1.10 1.11 12.70 10.82 6
3 13267 1009.5 -920.5 1.10 1.12 11.72 9.48 6
4 18377 760.7 -676.2 1.12 1.17 9.53 6.92 6
5 23503 1035.9 -939.4 1.10 1.11 11.98 10.18 5

C. AWB-Clustering, Matching and Self Learning

In this stage, an active window based clustering is proposed
in which localized events clustering within the detected active

Fig. 2. Spike geometric features. spike features which characterize a spike
shape include positive and negative gradients, spike width, positive and
negative peaks, and peak-to-peak amplitude. [7]

windows, aw′ks, is performed. This approach is capable of
avoiding mixing of events from different appliances into the
same cluster which are temporally far apart, increases the
accuracy of events pairing because of the narrower time
window over which events matching is done, and doesn’t
assume what appliances exist within the households. Our pro-
posed approach focuses on an active window based localized
clustering of events residing in each active window comprised
of either single or overlapped operation of on-off and multi-
state appliances, even though the event clustering stage of the
whole NILM system is based on batch-processing.

1) Events Clustering: Since the number of clusters is not
know in advance, we utilize an automatic clustering as in [14],
namely the genetic algorithm (GA) in which clustering itself
is treated as an optimization problem. These algorithms were
proven to have better performance over some of the classic
clustering approaches and does not require number of clusters
a priori.

2) Matching and Self-Learning: In the matching process,
all rising and falling events are checked for matching pairs so
as to infer the usage interval of each appliance. The matching
process in the proposed system is based on the background-
level detection and active window approach. Hence, this
processing stage is performed on each identified active win-
dow times. It supports self-learning in operation to create a
pool of possible appliance power states and build update-
able appliance database. Since the characteristics of upward
and downward transition events of appliances could slightly
different due to voltage fluctuation or noise, threshold based
Euclidean distances of the extracted features is performed to
check if the new event clusters from the current active window
also exists in the previously processed active windows. This
method also utilizes simple transient related features and
generic appliances usage patterns for labeling the category of
appliances observed over a single or multiple active windows
depending on the operation duration of appliances. In this
stage, some clusters of matched pairs which does not belong
to the target appliances are labeled as unknown high and low
power appliances.

Once the operational activities of the target appliances are



TABLE II
QUALITY MEASURES FOR EVENT DETECTION

Appliance Ne Nd NTP TPR FPR FNR F-score
Fridge 1856 1818 1801 0.97 0.0092 0.0296 0.980
Washer 3800 3684 3500 0.92 0.0484 0.0789 0.935
Dishwasher 84 90 84 1 0.071 0.000 0.966
Microwave 69 72 66 0.956 0.087 0.0435 0.936
Stove 429 438 422 0.983 0.037 0.0163 0.973

detected and identied by using the proposed method, their
energy estimation can be simply computed by taking the On-
Off time and the steady-state power of each operation using
Equation 7.

Ej =

Z∑
z=1

P jss ∗ (tzoff − tzon) (7)

where P jss is the average steady state power, j refers to
appliance number, z indicates the number of identied paired
events and toff and ton are the on/off times of each operation
cycle.

IV. EXPERIMENTAL RESULTS

Experimental analysis is performed on real households
which consists of active and reactive power as well as voltage
values. The measurement was carried out for one month at
1Hz from 10 pilot households with sub-metered ground truth
data on some target appliance of our interest. Some of the
measurements were taken using our own Ned-meter, a new
and low cost smart meter prototype built by us, and others by
a well known utility supplier in Italy.

To evaluate the performance, we utilize the test bench and
quality measures for NILM as presented in [11]. Table II
shows the performance metrics of the proposed event detection
algorithm of two weeks data from one house. The true positive
rate, false positive rate, the false negative rate, and the F-score
are all computed as shown in Equation 8 and 9. The overall
detection accuracy for all the measurements is more than 94%.

TPR =
NTP
Ne

, FPR =
NFP
Ne

, FNR =
NFN
Ne

(8)

F − score = 2 ∗ Prec ∗Recall
Prec+Recall

, where

Prec =
NTP

NTP +NFP
, Recall =

NTP
NTP +NFN

(9)

Further more, Equations 10, 11 and 12 represent appliance
event classification rate, appliance cycles classification rate and
assigned energy rate respectively.

AECR =

∑
n̂j,e∑
nj,e

= 0.948 (10)

ACCR =

∑
n̂j,a∑
nj,a

= 0.925 (11)

AER =

∑ ~̂wa∑
~wa

= 0.915 (12)

The results in Equations 10, 11, and 12 indicate an overall
events, cycles classification accuracy and assigned energy rate
of 94.8%, 92.5% and 91.5% respectively.

TABLE III
ENERGY ESTIMATION OF TARGET APPLIANCE OVER THE COURSE OF ONE

DAY

App-name active-
time

mean-
power

Ener-
total

Ener-
spin

Ener-
heat

num-
Heat

num-
Spin

Fridge 520.38 130.98 1154.77 - 1154.77 32 -
washer 90.48 1762.03 388.18 106.92 281.27 2 250
Dishwasher 77.55 1757.80 740.14 - 740.14 2 -
Microwave 15.12 1019.34 127.305 - 127.305 7 -
Stove 63.82 2254.31 963.14 - 963.14 48 -
Dryer 56.38 1951.84 1554.63 - 1554.63 26 -

The results in table III show energy estimation, 4th

column, of target appliances with the 7th column showing
number of pair of heating events or fridge cycles in
a day for each appliance. The last column shows the
number spin cycles detected in one washing operation.
When compared to the ground truth energy vector EGT =
{1211.35, 453.468, 892.728, 168.724, 1016.457, 1643.246}
Watt-hours of the target appliances, the energy estimation
accuracy attained is around 91.5%.

V. CONCLUSION

This paper introduces a spike-like geometric features of
the slope for appliance identification and presents an active
window based unsupervised localized clustering and matching
technique for monitoring home appliances utilizing appliances
geometric features and usage patterns. The proposed approach
for event detection, feature extraction and active window based
appliance classification technique along with energy estimation
are described in the paper. We developed a simple NILM
system and then evaluate its accuracy using a test bench
quality measures. Our experimental results clearly show that
the disaggregation algorithms perform well.

VI. FUTURE WORK

As previously mentioned, this is an ongoing research and
our work on NILM is still in progress. In our future work we
envision to improve the various stages of the algorithms and
perform continuous evaluation and results verification of the
proposed approach. At the moment testing is done on our own
dataset, but in the future we will continue testing in various
publicly available dataset. In the future, further research is
required to increase the overall accuracy of the disaggregation
results.
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