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Abstract—Traditional energy measurement fails to support
consumers in making intelligent decisions to save energy. Non-
intrusive load monitoring is one solution to provide disaggregated
power consumption profiles. Machine learning approaches rely
on public data sets to train parameters for their algorithms
— most of which only provide low-frequency appliance-level
measurements, thus limiting the available feature space for
recognition.

In this paper, we propose a low-cost measurement system for
high-frequency energy data. It extends an off-the-shelf power
strip with voltage & current sensors and a single-board PC as
data aggregator. We show the architecture and describe a central-
ized data collector for multiple systems recording concurrently.
The self-contained unit for six monitored outlets can achieve up
to 25 kHz for all signals simultaneously. A full unit is expected
to cost less than 100 €.

I. INTRODUCTION

Due to an increased number of household and office appli-
ances, it is infeasible to attach energy meters to each device.
Lately, Non-Intrusive Load Monitoring (NILM) has gained
wide popularity due to its single point sensing, user-friendly
deployment, and power consumption estimations. Appliance-
level load profiles allow the user to make intelligent decisions
in order to reduce the overall energy usage.

In order to properly validate power disaggregation and
appliance identification algorithms, a ground truth is required
to provide information regarding actual switching events and
power consumption to train models and tune parameters.

Usually smart plugs are utilized to collect appliance-level
measurements as ground truth for larger data sets. Unfortu-
nately, most of these low-cost smart plugs come with the
inherent problem of having only low-frequency measurement
capabilities. This makes it difficult to reconstruct the actual
current and voltage waveforms — which is required to track
on/off events of appliances with precision. Assuming that
only a single appliance is switched on within a small time
window can be misleading, and may introduce errors in the
case of larger office buildings (large number of appliances)
and especially with switch-mode power supplies (fast periodic
current spikes).

This paper proposes a high-frequency Data Acquisition
system (DAQ) for energy monitoring and ground truth collec-
tion. Our proposed system can capture startup & switch-off
transients, which can be used for feature extraction, appliance
identification, and fault detection. The design is based on an
off-the-shelf power strip, a single-board PC for data collection,

and sensors to measure electricity signals. All components are
contained in a custom enclosure to provide a self-contained
high-frequency energy DAQ system for voltage and six current
signals.

The rest of this paper is structured as follows. We discuss re-
lated work and existing systems in Section II, and subsequently
introduce a new system architecture in Section III. The data
collection and storage details are explained in Section IV. We
show preliminary results and design evaluations in Section V.
This paper concludes in Section VI.

II. RELATED WORK

Research in the field of NILM is mostly based on public
data sets to analyze and evaluate new algorithms for the task
at hand. Multiple research groups have created and published
data sets, which can be categorized into low- and high-
frequency measurements [1]. In recent years high-frequency
measurements have become more popular, due to techno-
logical advances in the field of electronics. Still, specialized
hardware is required, which usually is quite expensive (up to
thousands of Euros).

Correctly identifying appliance transients and signatures is a
key step for power disaggregation and appliance identification
[2]. This typically requires high sampling frequencies in the
range of Kilo-Hertz [3]. Different appliance types can have
distinguishing features hidden in the electrical signal wave-
form. High-frequency voltage and current data carry a vast
amount of information depending on the appliance type. Such
information was collected and visualized to compare different
appliance types on various feature metrics [4].

A high-quality data set for household energy consumption
was provided by [5]. The mains signal was sampled with
16 kHz. Appliance-level data (ground truth) were sampled at
1s — a significant lower frequency, not capable of reconstruct-
ing the mains waveforms. This poses problems in the correct
matching of appliance transients close to violating the switch
continuity principle [6]. This is a common concern with many
existing data sets [7] [8] [9].

Using a custom circuit board for voltage and current sensing
allows for a compact recording device and provides config-
urable parameters for rated current and mains frequency [10].
However, this approach still requires an external analog-to-
digital converter and is only capable of monitoring a single
appliance. Combining multiple monitored power outlets into a
single unit would improve cost efficiency, reduce complexity
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Fig. 1. The architecture of the measurement unit shows the data flow through
multiple stages.
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of analog-to-digital conversion, and allow for easier data
collection and storage.

Lights, refrigerators, printers, and other consumer electron-
ics are not strict resistive loads and generate different patterns.
Using an oscilloscope, it is possible to visualize these patterns
and analyze the data digitally [11]. However, most oscillo-
scopes are only capable of displaying values with 8- or 10-bit
resolutions for a low number of parallel signals. Oscilloscopes
have limited processing power and storage capacities, which
is a key requirement for long-time continuous recordings.

Household energy consumption data are an important source
for smart grid solutions. Using new forecasting algorithms
and disaggregated energy data, these predictions can be of
great value to grid operators and expansion plans. Generating
forecasts for a large number of households (thousands) is
feasible on commodity hardware [12] and can be accurate to
a 15 min time window [13].

III. ARCHITECTURE

The key requirements for the proposed system are: high
sampling frequency (to reconstruct waveforms and harmonics),
multiple monitored outlets (in a combined unit), integrated
processing unit (with network connectivity), and a centralized
data collection and storage back end. The proposed high-level
architecture can be seen in Figure 1. This paper focuses on the
physical data acquisition, collection, and storage — a real-time
data analytics pipeline is deferred to future work.

The design of physical components is based on an off-
the-shelf six-port power strip. The current design and all
prototypes make use of the Schuko socket/plug system (used
in most EU countries). The power strip is used as foundation
and center piece — all components are designed around it.

The architecture for the DAQ system distinguishes between
three main components, which are designed to fit together into
a single assembly. Using a custom-built enclosure, the neces-
sary safety requirements are met: touch protection, electric
isolation, and rigidity. Once the analog signals are converted
to digital values, the samples are packed together and sent to
the data center for post-processing and persisting.

The main control unit is a single-board PC, which is
connected to the local network via WiFi or ethernet. The data

acquisition, including the analog-to-digital conversion (ADC),
is handled by custom circuitry attached via USB. Voltage and
current signals are generated with an independent circuit board
to isolate high- and low-voltage domains.

A. Sensor Board

The sensor board is the only high-voltage component in the
system. It contains current sensors and circuitry for voltage
sensing. The power strip supplies a live and neutral wire
connection. This external power is used to provide a common
5 VDC power supply for all sensors, ICs, and the single-board
PC.

The voltage signal is generated by an AC-AC transformer
which acts as galvanic isolator and step-down converter from
230 Vrms to 6 Vruvs. The low-voltage signal is then fed
through a series of voltage dividers and a DC-offset injector.
Adding a DC-offset is necessary to produce a strictly positive
signal for the unipolar ADCs placed on the sampler board.
The final signal has a mean of 2.5V, with peaks at 1.27V
and 3.39V.

The six independent current signals (one for each socket)
are generated by a Hall effect-based integrated circuit, which
generates an analog voltage proportional to the current flowing
across the chips primary pins. Depending on the use case, the
system can be built with ICs calibrated to different sensitivity
settings, allowing sensing of currents from 5, 20, and 30 Apcak.
The chip we selected, Allegro ACS712, yields 2.5V if no
current is flowing, and it can range from 0.5V to 4.5V for
the negative and positive AC half-waves.

A 10-pin connector (ribbon cable) is used to wire all sensor
signals to the sampler board on the opposite side of the
power strip. This connector is also used to provide a common
supply voltage for all components. This separates the high-
voltage connections (on the sensor board) from the low-voltage
components (on the sampler board and single-board PC).

B. Sampler Board

The main tasks of the sampler board are to convert the
analog sensor output into digital data and transfer them via
USB to a single-board PC. The involved components are eight
individual ADCs, a microcontroller, and a dedicated USB
connectivity chip. This board is designed to fit on top of the
single-board PC and make use of the general purpose 1/O pins.
This creates a compact unit without any loose wires or plugs.

The ADCs treat each signal independently, while the digital
output of all converters is grouped into an 8-bit bus directly
attached to the microcontroller. Using a 12-bit ADC resolution,
the microcontroller needs to read 12 bytes. Prepending a 16-bit
checksum, each sample is transferred to the USB connectivity
chip without any further processing. The microcontroller’s sole
responsibility is to get data from the ADCs and send them to
the USB chip.

The USB connection from the sampler board to the single-
board PC is deliberately kept simple, to reduce any addi-
tional computationally heavy-lifting on the single-board PC.
Recorded sample packets are received via USB bulk transfer
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Fig. 2. The fully assembled measurement unit with the power strip in the
center and the 3D-printed enclosure.

in the Linux kernel. Control commands are sent over a serial
communication link, based on a simplified Hayes command
set!.

The main components are eight MCP3201 for analog-
to-digital conversion (12-bit, unipolar, OV to 4.096 V), an
ATmega324PA  microcontroller for the control logic, an
FTDI232H for USB data transfers, and a Raspberry Pi B+
for buffering and network connectivity. The ICs and other
electronics have an estimated price of less than 65 €.

C. Enclosure

The six-port power strip in the center is implanted within a
custom two-part enclosure to protect and shield the electronics
inside. Fig. 2 shows a rendering of the fully assembled
measurement unit. On the top left corner is the Raspberry Pi,
with the network port accessible. On the bottom (over the full
length of the power strip) is the sensor board enclosed with
only two small cooling openings in the case.

The case design makes use of existing design features of
the single-board PC and power strip. Existing mounting holes
and screws can be reused to assemble all components. Special
seals and plastic lips around the seam act as touch guards and
protect from high-voltage contacts. The internals of the power
strip are incorporated in the sensor board layout to minimize
wire lengths and copper paths.

The custom 2-part enclosure is 3D-printed (see Fig. 3)
and costs less than 15€. The manufacturing for a fully
self-contained measurement system are expected to be below
100 €.

IV. DATA COLLECTION AND STORAGE

Since most single-board PCs are equipped with a single
USB interface, all data has to pass through this bottleneck.
This means receiving data from the sampler board must not

'Hayes Command Set Reference: http:/nemesis.lonestar.org/reference/
telecom/modems/at/summary-at.html

Fig. 3. The enclosure printed in two parts with an FDM-based printer — a
Prusa i3 derivative — a full print takes approx. 10 hours.

interfere with sending the recorded data over the network.
With careful selection of buffer sizes and queue lengths the
transfer in both directions can be guaranteed to be without
data loss. This could also be achieved by using a real-
time operating system, but this requires additional efforts for
network connectivity and USB bulk transfer handling.

Assuming a sampling frequency of 5kHz, the input from
the sampler board is approx. 70 KiB/s. The single-board PC
stores the data in chunks (e.g., 128 MiB, 256 MiB, 512 MiB)
in the internal memory before periodically sending them to
the data center. In order to assure uninterrupted transfer,
the outgoing bandwidth must be limited to not impair the
incoming data from the sampler board. Preliminary tests show
that a bandwidth corridor between 500 KiB/s and 1000 KiB/s
yields the expected result.

Since computational power is limited on a single-board PC,
all post-processing of data has to be done after collecting the
data off-board. This creates the opportunity to convert the data
into a multiple common file formats, apply compression, and
add redundancy for error correction.

The microcontroller stores each sample as 14-byte packets:
12-bit for eight ADCs generate 12 bytes, plus 2 bytes for the
current sample ID. This structure needs to be converted with
multiple bit operations to extract the actual digital values from
the analog signal. The sample ID overflows at a modest rate
(depending on the sampling frequency), so it can be used to
detect data loss.

Finding a suitable data format to store high-frequency data
is an interesting research topic in its own right, however, based
on the NILMTK project [14], we currently support HDF5 as
the default storage format. Using HDFS5 allows for a structured
and easy to read file structure. Most common programming
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Fig. 4. This graph shows the recorded current trace of a room heater with
approx. 6560 W. After 20 ms the appliance was switched on, resulting in an
almost instantaneous current draw.

languages and scientific computing software packages support
HDF5 files natively or provide libraries to import them ef-
ficiently. Depending on post-processing pipeline, it might be
reasonable to compress all files before persisting them to disk,
or use the intrinsic HDFS5 data set compression.

Each file carries a list of attributes: timestamp (UNIX time
with microsecond precision), sampling frequency (Hertz), a
measurement unit identifier (UUID), and a sequence number
of the total recording this file is part of. Every signal stream
(voltage and current signals) is stored as individual data set
with corresponding attributes: calibration factor and removed
DC-offset.

Assuming a raw chunk of 256 MiB (approx. 1 hour @
5kHz) the resulting HDF5 file is the same size. During file
parsing and converting to HDFS, the samples are checked for
gaps and data loss, before being compressed and persisted to
permanent storage.

V. EVALUATION

Each ADC uses a unipolar fixed reference of 4.095V. This
allows a value range from 0 to 4095 using a 12-bit resolution.
The current sensors are rated for 1.575V to 3.425V (ACS712-
05B) and 0.52V to 4.48V (ACS712-30A). This results in
clipping of the positive half-wave (only on the ACS712-30A),
reducing the maximum measurable current to 27.4 A. Since
the mains fuse triggers at 16 A, this is not an issue. The
average noise of 0.034 Agys (ACS712-05B) and 0.046 Agrws
(ACS712-30A) is sufficient to detect appliances as low as
10W.

As a benchmark test, a room heater with approx. 650 W was
used to test the current signal accuracy. The reconstruction of
the mains frequency (50 Hz sinusoidal) is clearly visible in
Fig. 4. The Hall effect-based sensor has a range of £5 Apcax
according to the data sheet. However, our results show that
current spikes up to £8.63 Acak can be measured accurately.
The ADC starts to clip above that threshold.

The recorded voltage signal was compared against data from
an oscilloscope (Hantek 6022BE). The waveform is again
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Fig. 5. The recorded high-frequency voltage signal by our unit compared to an
off-the-shelf oscilloscope recording. For easier comparison, the oscilloscope
signal is shifted in time by +7 ms.

clearly visible in Fig. 5, and matches the oscilloscope’s data.
The sampling frequency of our system can be adapted in the
range of 250 Hz up to 25 kHz of simultaneously sampling for
all signals with 12-bit resolution.

Preliminary compression tests (with lossless data compres-
sion algorithms) showed that the 1zma2 algorithm with a xz
container yields the best compression factor. A 256 MiB HDF5
file in its compressed state only requires approx. 70 MiB
— only 30% of the original size. Since high-frequency data
signals have a repeating structure (12-bit groups, limited
range of input values), tweaking compression parameters has
potential and is deferred to further research.

VI. CONCLUSIONS

We have shown a new high-frequency data acquisition sys-
tem design, which can be used as a cost-effective measurement
system for electric appliances. This is especially useful in the
context of NILM and appliance identification.

The presented modular design allows the research commu-
nity to adapt and customize to their specific needs (power
outlet shape, mains voltage and frequency). The sampling
frequency and signal resolution show a vast improvement
compared to existing data sets, which only provide ground
truth data with a second-interval.

We would like to encourage the use of a high-frequency
ground truth for future research and new data sets. This could
improve data quality for various NILM-related subtasks and
similar research fields.
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