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Abstract—Device specific power consumption information 

leads to a high potential for energy savings. Smart meters are 

currently deployed in several countries, but they are only able to 

track the overall consumption in domestic and commercial 

buildings. One promising option to gain device specific 

information is called Nonintrusive Load Monitoring (NILM), 

which can be of great use in combination with smart metering. In 

NILM, device specific information is achieved by disaggregating 

the overall load profile from a single-point measurement using 

device fingerprints and machine learning techniques.  

In this paper we focus on unsupervised learning methods to 

minimize the learning phase of device fingerprints. To increase 

the algorithm accuracy a range of several electrical features are 

taken into account. This research is part of a public funded 

project, which aims to increase the energy efficiency in industrial 

applications. 
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I. INTRODUCTION 

With increasing energy prices the incentive to save energy 
is becoming constantly larger. Furthermore, several countries 
committed to save CO2 over the next couple of decades to 
prevent climate change. The rollout of smart meters is trying to 
address these issues. Nevertheless, field tests show that the 
main energy savings are either not enduring or not highly 
significant [1][2]. Even with smart meters, the individual 
electricity consumer just receives the overall power 
consumption information over a period of time (e.g. yearly, 
monthly, weekly), but no appliance-specific information is 
presented.  

Power consumption on an appliance level reaches higher 
energy savings [1]. Ehrhardt-Martinez et al. found that daily or 
weekly overall consumption feedback can reach up to 8.4 % 
savings, while real-time device specific feedback increases the 
energy savings up to 12.0 %. This study was carried out for the 
domestic sector. In the commercial sector even higher savings 
can be estimated, as more adjustments to the environmental 
appliance settings can be made. 

A widespread technology to receive appliance specific  
consumption feedback is submetering, where one sensor per 
appliance has to be installed. Another method to gain appliance 
specific consumption feedback is called Nonintrusive 
(Appliance) Load Monitoring (NILM, NIALM or NALM). The 
main advantage of NILM is that device specific consumption 
can be achieved by a single-point measurement for several 
appliances. This metering point measures several electrical 
parameters (see section VI) and a suitable NILM algorithm is 
disaggregating the overall electrical power consumption (see 
section V). With the smart meter rollout in several countries 
this approach receives recently more and more popularity [3]. 

II. RELATED WORK 

The NILM approach was firstly proposed by G. W. Hart 
[4]. Since then, several research groups have worked on this 
topic. More detailed references to specific working groups will 
be presented in section V and VI, when discussing a NILM 
algorithm and different electrical features. Review publications 
conclude that “no complete NI(A)LM solution suitable for all 
types of household appliances is available” and that “the 
available solutions are either unsuitable for some appliances or 
still at an early developmental stage” [5][6][7]. Zeifman and 
Roth summarize further “that no complete set of robust, widely 
accepted appliance features has been identified” [5].  

There are four different appliance categories, which are 
mentioned in [4][5]. Each category comprises individual 
challenges for recognizing an appliance within an overall load 
profile:  

i) Permanent consumption appliances 

ii) On-off appliances 

iii) Finite state machine (FSM) appliances 

iv) Continuously variable load appliances 

Much research has been carried out on ii) and iii). i) is 
similar to ii), but without any information of a switching event. 
Category iv) is most likely the most challenging in load 
disaggregation, as the appliance arbitrarily and continuously 
changes its power consumption [8]. 



III. CHALLENGES 

Despite the fact that each appliance category is differently 
complex for recognition, there are even more technical 
challenges to overcome in load disaggregation:  

 Simultaneously switching appliances  

 Detecting appliances which are connected to 
multiple electrical phases 

 Large building environments and therefore a large 
appliance pool leads to more overlapping events 
and load profiles  

 Fluctuations within the electrical power network 
introduce arbitrary noise into the system 

 Cable attenuation changing the appliance signature 

 Detecting appliances with subject to wear and 
therefore changing the appliance signature 

 A short and simple training phase of a system. 

In addition, also ethical questions like privacy have to be 
taken into account [9]. Furthermore the difficulty of load 
disaggregation varies heavily on the application, e.g. applying 
NILM in commercial buildings has special challenges [10].  

We feel that combining a complete set of robust electrical 
appliance features with an unsupervised learning approach 
could help to move this research area further forward. 

IV. PROJECT DESCRIPTION 

The described research is part of a public funded project. It 
started at the end of 2015 and four private companies 
(including Discovergy GmbH, GreenPocket GmbH, EasyMeter 
GmbH and RWE GBS GmbH) plus one research facility 
(Fraunhofer IMS) are participating. One major goal is to gain 
more experience in the area of energy efficiency in industrial 
applications. For this an unsupervised NILM algorithm is 
developed trying to minimize the training phase as much as 
possible. To increase the algorithm reliability several electrical 
features are considered (low and high frequency – see section 
VI). To lower the algorithm complexity the development 
focuses on three different areas: franchise stores, municipal 
buildings and production halls. 

The project outcome are 15 NILM-prototypes, which will 
be evaluated later on in an industrial field test. Each NILM-
prototype consists of an enhanced smart meter, a gateway for 
transmission of measurement data, a server where the NILM-
algorithm is executed and an energy management system, to 
visualize and analyze the algorithm results. 

Further information on the project can be found at 
www.nilm.info 

V. UNSUPERVISED LEARNING ALGORITHM 

NILM algorithms can be classified in eventless and event-
based approaches. The latter also take the information into 
account, which power consumption level was reached before 
the switching event occurred. For the load disaggregation task 

machine learning algorithms are applied. They strongly vary on 
how comprehensive the training phase has to be. Machine 
learning can be divided into supervised and unsupervised 
approaches, but also semi-supervised learning methods can be 
useful in NILM [11].  

For practical NILM applications, the training phase should 
be as short and simple as possible. Some training could happen 
before shipment of a product, but one main challenge of NILM 
is that the product should be easy to setup for the final user. 
Our goal was to develop a NILM-system with a small training 
phase. Therefore we focused on unsupervised methods with the 
ability to perform the labeling of the devices with the aid of an 
appliance database. For data acquisition we used an off-the-
shelf hardware with the possibility to continuously digitalize 
current and voltage with a maximum sampling rate of 500 
kS/sec and a 16-bit vertical resolution. This raw data is 
streamed to a MATLAB program where the NILM 
disaggregation is performed in near real-time. 

Our algorithm can be described with following steps and 
consists of a typical event-based approach: 

1. The data acquisition system measures voltage and 
current signals. Device features like real power, 
reactive power or transients are calculated. 

2. An event detector checks constantly for a switching 
event. 

3. Once a switching event has occurred, the algorithm 
analyzes the calculated device features prior a 
switching event and post a switching event. This 
analysis is achieved by using an unsupervised 
clustering method. 

4. The device features are compared against a device 
feature database. From all the possible items the 
algorithm chooses the best fit within the feature space. 
If no entry is found, a new device is added to the 
database and the algorithm starts to search for the next 
event.  

In this version, the following electrical features are used for 
disaggregation: the overall active power, the overall power 
transient, the apparent power, the reactive power and the phase 
angle of the first harmonic. One main property of our algorithm 
is that it is able to handle completely unknown appliances. It 
even can start off with an empty appliance database, which 
means it can be used as a plug-and-play NILM system. The 
algorithm detects appliance clusters and assigns a unique ID to 
them. The labeling of the appliance name can be done post 
disaggregation. A labeling database with known common 
appliances can assist in this task. In the future, the above 
mentioned relatively high sampling rate also gives us the 
opportunity to integrate more electrical features, like harmonics 
or EMI signatures into the algorithm (see section VI). 

Fig. 1 shows an excerpt of the disaggregation algorithm 
using up to 15 concurrent running appliances. The continuous 
red line shows the overall measured real power, which would 
usually be measured with a typical smart meter.  



 

Fig. 1. Excerpt of the unsupervised learning algorithm. The continuous red 

line shows the overall real power. The dashed lines highlight the results of the 

disaggregation algorithm, which consist of single power consumers. 

The dashed lines in other colors show the recognized 
appliances: pc monitor 1 (light blue), fluorescent lamp (dark 
red), ventilation low (grey), ventilation Δ(medium-low) (light 
orange) and pc monitor 2 (green). Each appliance is detected 
by the clustering algorithm automatically and labeled 
afterwards manually. Note that adding up all the dashed lines 
will result in the measured real power. 

VI. AVAILABLE ELECTRICAL FEATURES 

As mentioned in section V the presented algorithm uses 
mainly low frequency features so far. These are highlighted in 
chapter A. To increase the algorithm reliability and to be able 
to disaggregate very similar devices, it is planned to 
incorporate higher frequency features like harmonics and EMI 
signals in the future. We pre-investigated these (see chapter B, 
C & D) for feature transformation. A very good classification 
of different sampling ranges is described in [6].  

Usually higher sampling rates lead to higher measuring 
costs, but provide the opportunity to detect a larger number of 
appliances. Furthermore, the features can be divided into time-
based analytics like real power and frequency based analytics 
like harmonics.  

A. Real and reactive power (frequency range: 1 h – 50 Hz) 

The most common way to distinguish appliances from each 
other is to take the real and reactive power consumption into 
account [4]. This approach is sufficient if all monitored 
appliances have a distinct power consumption. If not, they can 
not be solely separated by this feature. Furthermore 
continuously variable load appliances can not be tracked, as the 
power consumption changes arbitrarily and continuously. 

B. Harmonics (frequency range: 50 Hz – 10 kHz) 

In addition to the power consumption the harmonics of the 
mains frequency (50 or 60 Hz) can be used as a NILM feature. 
Harmonics exist for higher harmonic orders (>1), if the current 
draw of an appliance exhibits a non-sinusoidal waveform. 
Previous work from Umeh et al. revealed the possibility to 
identify single devices by observing the generated harmonics 
[12]. 

 
Fig. 2. Measured harmonics for the overall power circuit compared to 

individual device harmonics. Monitor, floor and ceiling lamp as examples. 

We took a power circuit with several attached appliances 
into account and analyzed the harmonic pattern behavior for 
each appliance and for the overall load. For examination we 
looked at the imaginary and real value of each harmonic by 
analyzing the present nonsinusoidal current waveform using 
the discrete Fourier transform (DFT). The summed up 
independent device measurements correspond with little 
fluctuations to the measured value for the overall power circuit, 
where all the appliances are switched on concurrently (see Fig. 
2). In this example the internal components of the appliances 
produce a current waveform which is symmetrical to the time 
axis and therefore only odd harmonics are shown in this figure 
(even harmonics are zero).  

C. Electromagnetic interference (EMI) (frequency range: 10 

kHz – 200 kHz) 

Nowadays more and more consumer electronic appliances 
are using switch mode power supplies (SMPS). They emit high 
frequency noise within a power network. This EMI can be 
detected by monitoring the overall voltage signal and carrying 
out a FFT analysis of the noise.  

To accomplish this, we used an off-the-shelf data 
acquisition hardware with a 16-bit vertical resolution. To be 
able to track the noise, it was necessary to filter out the main 50 
Hz wave, which was done with a high-pass filter. With this 
setup, we were able to record EMI signals from different 
devices and record their switching patterns (see Fig. 3). This 
method is similar to Patels and Guptas approach [13]. For the 
first time, they were able to show that the EMI signals of 
appliances with SMPS are stable and can be used across 
different buildings. 

In a real building scenario the overall power network acts 
as an antenna. Our measurements showed different radio 
signals, including the European DCF77 transmitter. Even 
appliances which are the same brand and model, but exhibit 
manufacturing deviations, can theoretically be disaggregated 
by this method. But more work has to be done in overlapping 
signature frequencies. 



 

Fig. 3. EMI 3D-spectrum of a 19" LCD Monitor. 

D. Transient and Steady-State examinations 

All the above features can be either examined in a transient 
or steady-state [14]. Transients require a higher sampling rate 
than steady-state approaches, as switching peaks have to be 
detected in detail. These peaks vary in addition from the 
current state the appliance is in, e.g. if the appliance is hot or 
cold and therefore transients are not as much of a reliable 
feature as compared to steady-state approaches. Still they can 
be beneficial if the steady-state features are too similar, e.g. 
having the same power consumption level. 

E. Macroscopic patterns 

In addition to the above electrical features it can be 
beneficial to look at macroscopic patterns. This is especially 
useful if the appliance to detect is always switched on at a 
specific time of day or weekday. Also correlations, like which 
appliances are commonly switched on together, can be 
examined (e.g. a PC and a monitor). The advantage of this 
approach is that comparably low sampling rates can be used. 

VII. EVALUATION 

The algorithm evaluation was performed on different 
scenarios. The evaluation was based on the test protocol of 
Butner et al. [15]. We combined the low-wattage and the mid-
wattage protocol, as our system was able to handle both ranges 
equally. 

We used 5, 10 and 15 appliances as an appliance pool, 
which can be commonly found either in a domestic or in a 
commercial environment: 8x distinct lamps, 2x PC monitors, 
1x DVD player, 1x network switch, 1x fan heater, 1x hair dryer 
and 1x air conditioner. These appliances are part of the NILM 
categories i), ii) and iii). Appliances in category iv) are not 
considered yet (see section II). The number of test cycles was 
increased with a growing number of appliances, considering 
the increasing number of possible switching variations. For 15 
appliances 60 randomized switching events were realized in 
every measurement. Table 1 shows the results with 15 
appliances for 5 different measurements. It shows the detection 
accuracy (DeA), disaggregation accuracy (DiA) and the overall 
accuracy (OA) corresponding to [15]. Note that a different 

appliance setup, e.g. more devices, could lead to far lower 
results in this current algorithm version. Values smaller than 
100% are either due to wrongly classified devices or missed 
events.  

Table 1 Results of the evaluation using 15 appliances 

# DeA DiA OA 

1 100% 100% 100% 

2 100% 100% 100% 

3 96.7% 96.7% 96.7% 

4 100% 100% 95.0% 

5 100% 100% 98.3% 

VIII. CONCLUSION & FUTURE WORK 

Intensive research has been carried out in the NILM field, 
but no wide spread reliable solution is available so far, which 
would work in different environments. There are numerous 
electrical NILM features available for disaggregation, but 
practical applications just use a small subset of these.  

To improve reliability, we evaluated several electrical 
NILM features and our current results show that they are 
promising for improving NILM accuracy. Based on this, we 
developed one version of an unsupervised learning algorithm, 
which exploits and combines various features. Furthermore, 
this system avoids a comprehensive learning phase using a 
plug-and-play appliance signature database. We plan to extend 
this work in multiple ways. Firstly, our goal is to integrate as 
many distinct electrical features into the algorithm as possible. 
We believe this step will enhance the algorithm accuracy 
further. Secondly, we would like to investigate continuous 
variable loads further by using harmonics and EMI signatures. 
This is because we feel that variable loads can not be neglected 
in realistic environments. Thirdly, we would like to adjust our 
approach to different building scenarios. Lastly, we plan to 
integrate our research results into enhanced smart meters. 
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