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Abstract—The Non-Intrusive Load Monitoring (NILM) re-
ceived a rapidly growing interest these past few years due to the
increased energy efficiency requirements and the advent of smart
grids. Different techniques have been proposed to solve the NILM
problem but most of them are based on the use of low sampling
frequency signals (1 Hz or less). The lack of a suitable dataset
for high sampling frequency NILM, that is adapted for both
training and test of high frequency disaggregation algorithms,
hindered a lot the development of related techniques. In this
paper, we present a new measurement system that is adapted to
the construction of high sampling frequency NILM datasets. The
main features of the proposed measurement system are: the high
sampling frequency measurements (kHz), the control of the turn-
on and turn-off time instants with respect to the voltage time-
cycle, and the ability to create aggregate measurement scenarios
with up to six appliances working simultaneously. The system
should allow the construction of a high sampling frequency
dataset that should help the high sampling frequency NILM
community moving forward in their effort of solving the NILM
problem.

Keywords—Electrical measurement system, energy disaggre-
gation, event detection, high sampling frequency NILM, turn-on
transient

I. INTRODUCTION

With the growing need for energy efficiency nowadays,
people tried to propose different approaches to help satisfy
this need. Non-Intrusive Load Monitoring (NILM) is one of
them. The aim of NILM techniques is to disaggregate (or
break down) the global energy consumption (of a whole-house
for example) to extract the end-use (for example appliance-
level) consumption information. The interest in NILM has
grown a lot of interest these past few years and different
techniques have been proposed. A state-of-the-art for the
NILM techniques can be found in [1], [2], [3] and a table
that summarizes some of the works done up to 2012 can be
found in [4].

Even though, the NILM-related works multiplied these
recent years, most of them are based on the use of low
frequency (few seconds to few minutes sampling period)
electrical signals data. Furthermore, what helped a lot is the
release of different low frequency datasets starting from 2011
with the release of the REDD dataset [5]. On the other
hand, the lack of suitable datasets for high frequency-based
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techniques (hundreds of Hz to MHz) hindered a lot their
development.

To the best of our knowledge, the only openly available (to
this date) datasets with high frequency data are:

• REDD [5] (2011): 15 kHz sampling frequency and only
whole-house data (aggregate measurement).

• BLUED [6] (2012): 12 kHz sampling frequency. Whole-
house data with labels for individual appliance activity.

• UK-DALE [7] (2014): 16 kHz sampling frequency and
only whole-house data.

• PLAID [8] (2014): 30 kHz sampling frequency and only
individual appliance data (measuring a single appliance
at a time).

• HFED [9]: measurements over a range of 10 kHz to 5
MHz. The dataset contains ElectroMagnetic Interference
(EMI) traces collected from lab and home settings.

High frequency datasets with only individual appliances
data (like the PLAID dataset) can be used for the training
of some machine learning techniques in order to identify the
individual appliances’ types in the single-appliance scenario
case [10]. For a scenario with aggregate appliances, we can
imagine simulating aggregate signals by randomly mixing the
individual appliances’ signatures (or traces) and use these
aggregates for training. Nevertheless, this kind of datasets is
not adapted for the test since we will need real-life aggregate
scenarios to check the effectiveness of high frequency disag-
gregation algorithms in real-life situations. In contrast to this,
datasets containing only whole-house data will be adapted for
the test but less adapted for the training since the individual
appliance signature is not directly available from the whole-
house data.

A suitable high frequency dataset has to be informative [11].
The more control we have over the measurement setup, the
more information we get! We propose in this paper a new
measurement system that has the ability to build such a dataset
that is suitable for the training and the test of high frequency
disaggregation algorithms. The main features of our system
will be discussed in detail in the next sections and are:

• The high sampling frequency capability (section II).
• The control over the turn-on and -off time instants (sec-

tion III).



Fig. 1. Photo of the measurement system

• The possibility of doing aggregate measurements for up
to 6 appliances (section IV).

II. MEASUREMENT SYSTEM DESCRIPTION

In this section we will present our measurement system
and give details about some of its characteristics such as: the
measurement duration and the sampling frequency.

Fig. 1 shows the measurement system. A simple classical
measurement system is composed of a computer, an acqui-
sition card and current and voltage sensors (see the block
diagram of Fig. 2). The computer controls the running of
the measurements and saves the data. The acquisition card
works as an interface between the computer and the sensors
which measure the signals. For our system, we have added
to this classical configuration a control part (see Fig. 2).
The “Processor” is the main building block of this control
part, and the whole system, since it contains the program that
specifies how should the system work and according to this
gives orders to the “Triacs” block (a set of six electronic
switches) that controls the turn-on and turn-off of the six
outlets to which the electrical appliances to be measured are
connected. The “Zero-cross. detector” is an electronic circuit
that detects, permanently, the zero-crossing points (positive
to negative crossings) of the power line voltage signal. In
France the power line standard voltage has a root-mean-square
value of 230 V and a 50 Hz frequency. Also, the mono-phase
power line that supplies residential buildings is a single line in
contrast to other power line configurations that might be found
in other countries. After detection, this detector block sends a
cyclic square signal, corresponding to the zero-crossing points,
to the processor that uses it as a reference to control the turn-
on/off of the appliances.

During a typical measurement instance, we start by giving
the Run order on the Labview software (see the “Computer”
block in Fig. 2). This order, then, allows the “Acquisition card”
to send a Reset signal to the “Processor” and starts the mea-
surement. After that, the “Processor” reads a “SD card” that
contains the pre-loaded measurement scenario and using the
output of the “Zero-cross. detector” sends commands to turn-
on/off the appliances. Meanwhile, “VM” and “CM” blocks
(voltage and current measurement blocks) are measuring the
consumed electrical current and voltage at a main point that
groups together all the measured appliances. Finally, these
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Fig. 2. Block diagram of the measurement system

measurements are sent to the “Computer” via the “Acquisition
card”.

The voltage measurement is done using a Metrix MX 9030-
Z differential probe with a 30 MHz bandwidth and the current
measurement using a Metrix HX0102 current clamp with a
60 kHz bandwidth.

The measurements can be done for either short (few seconds
to few minutes) or long time periods (few hours to few days).
The only limitation is the memory space. For the sampling
frequency, we are limited by the bandwidth of the current
clamp (i.e. 60 kHz). Depending on the desired output, we
have the flexibility to sample at different rates as long as we
respect Shannon’s sampling theorem and the bandwidth of our
current clamp.

III. CONTROLLED TURN-ON AND TURN-OFF

One of the main features of our system is the ability to
control the turn-on and turn-off of the appliances. This control
is done with respect to the voltage time-cycle (the duration of
this time-cycle is 20 ms). The form of the turn-on transient
depend on the turn-on instant. More precisely, the turn-on
transient amplitude is not the same depending on the time
instant the appliance was turned-on w.r.t. the voltage time-
cycle. An appliance can be viewed as a black box system
with the voltage signal as its input and as output the consumed
current. The current is, then, the response of that system to
this specific input (sinusoidal signal). If we take one time-cycle
(as a convention for all of our measurements, we suppose that
the time-cycles start at the positive-to-negative zero-crossings),
then, after 5 ms from the beginning of the time-cycle, the
voltage signal will reach its negative maximum. After, 10 ms it
reaches the negative-to-positive zero-crossing and after 15 ms
it reaches its positive maximum and finally it reaches the
positive-to-negative zero-crossing again after 20 ms. Whether
the black box system sees (at the beginning) zero, a positive
maximum or a negative maximum will affect its response.

Note that for the remaining of this section we will only
consider measurements of a single appliance (the appliance
type may differ according to the measurement). Multiple
appliances measurements will be discussed in the next section.

A. Measurements reproducibility

As said before, our measurement system (see section II)
allows us to control the turn-on instant of the appliance. Since
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Fig. 3. Current signal of a vacuum cleaner. 5 instances of the same
measurement are shown with 0 ms time-delay (w.r.t. the starting of the time-
cycle)

we have this control, it is interesting to see whether we get
reproducible results if we do the same measurement with the
same configuration. To test this, we did 5 instances of the same
measurement on a vacuum cleaner and we chose to turn-on at
the beginning of the voltage time-cycle (i.e. 0 ms time delay
w.r.t the start). Fig. 3 shows the result of this measurement.
For this measurement, we configured a pre-trigger (pre-turn-
on) duration of 1 s and a post-turn-off duration of 1 s. We
can clearly see (zoom on Fig. 3) that the measurements are
reproducible since all the waveforms are superimposed on one
another.

The fact that we see at the beginning a waveform that
peaks to negative values is due to our choice of the turn-on
time instant. Since the voltage signal at the beginning of the
time-cycle starts at a positive-to-negative zero crossing (see
the chosen convention in the beginning of section III) and its
amplitude continues to decrease until reaching the negative
maximum, the current signal tries to follow this trend and we
get on the resulting turn-on transient this kind of peaking to
negative values.

B. Controlling turn-on/off instants

In this sub-section, we give a measurement example that
illustrates how the turn-on transient electrical waveforms vary
depending on the turn-on time instant. In real life situations,
we do not have control over the turn-on instants. As soon as
the switch (mechanical or electronic) is actuated, we directly
get the current surge. The main idea of having control over the
turn-on instants is to be able to reproduce, in a controllable
manner, the current response for different turn-on instants.
This allows to understand the appliances behavior and the
noticed variability of the turn-on transient which is a step
towards a better identification of electrical appliances using
transient signals (high sampling frequency signals).

Fig. 4 gives the results of four measurement instances taken
with a halogen lamp. Each instance starts at a different time
instant. These instants correspond to delays w.r.t. the beginning
of the voltage time-cycles and they are, respectively, 0 ms,
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Fig. 4. Current (top) and voltage (bottom) signals of a halogen lamp. 4
instances of the same measurement are shown with a variable time-delay
(0 ms, 5 ms, 10 ms and 15 ms)

5 ms, 10 ms and 15 ms. The delays for each obtained current
signal (top of Fig. 4) are indicated using dotted lines on the
corresponding voltage signals (bottom of Fig. 4). From this
figure we can distinguish two main things. The first one is how
the shape and amplitude of the transient current signals change
when changing the turn-on instants. Notice, particularly, how
the turn-on surge maximum amplitude doubled between the
10 ms (red) and 15 ms (cyan) curves. The highest current
values are obtained when the voltage is at its maximum peaks
(either positive or negative). The second thing is the way the
transient current signals follow the voltage signals (i.e. the
current signal is positive-valued when the voltage is positive-
valued and vice-versa). Of course, this was expected since
our load is resistive and this is what Ohm’s law is about!
Nevertheless, we expect that the current will still try to follow
the voltage even for other types of loads since as we said
before, the current signal is the response of the appliance to
the input voltage signal.

In Fig. 5, the turn-on active power of a drill is computed
and shown. Four instances were considered with different turn-
on time instants. This power is computed by averaging the
instantaneous power over overlapping sliding windows (with
an overlapping of 5 samples at 100 kHz) of 2000 samples
duration (1 time-cycle). The resulting powers give another
example that illustrates the turn-on transient variability. Note
how the transients’ shape for 0 and 10 ms are different from
the transients for 5 and 15 ms: the amplitude of the first ones
increases faster than the others. Also, the maximum amplitudes
are different (by around 300 W).

This variability in the turn-on transient signals suggest that
when identifying the electrical appliances using such signals,
the effect of the turn-on time instant is not to be neglected.

Finally, our measurement system controls the turn-off in-
stants too, also, w.r.t. the time-cycle of the voltage signal.
When an appliance turns off, the current signal goes to zero
and no particular thing seems to happen on the current signal.
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Fig. 5. Turn-on transient power of a drill. 4 instances of the same measure-
ment are shown with a variable time-delay (0 ms, 5 ms, 10 ms and 15 ms)

However, on the voltage signal, a voltage drop is noticed
when an appliance is turned-on, especially, for high power
consumption appliances. This voltage drop disappears and the
voltage finds its initial amplitude as the appliance is turned-
off. Controlling the turn-off instants may be a way towards a
better understanding of this phenomenon.

IV. AGGREGATION SCENARIOS

Along with the control of the turn-on/off time instants, our
measurement system is able to measure an aggregate of up
to 6 electrical appliances simultaneously. Since we can play
around with the turn-on/off instants, with the working periods
and with the number and the type of the appliances, we can
imagine creating a whole bunch of scenarios. Nevertheless, the
total power consumption of all 6 appliances must not exceed
4600 Watts limited by our 20 Amps circuit breaker.

As an example of aggregation, we chose to measure three
appliances: a vacuum cleaner, a drill and a halogen lamp
(the same ones that were used for the previous measurements
which results are shown in Fig. 3, 4 and 5). we chose two
aggregate scenarios (read as: Appliance, Event, (time until next
event)):

• Scenario I: Vacuum cleaner, ON, (2 s) → Drill, ON,
(2.5 s) → Lamp, ON, (1 s) → Drill, OFF, (0.5 s) →
Lamp, OFF, (0.25 s) → Lamp+Drill simultaneously, ON,
(2.5 s) → All appliances, OFF.

• Scenario II: Vacuum cleaner, ON, (2 s) → Drill, ON,
(2.5 s) → Lamp, ON, (1 s) → Drill, OFF, (0.5 s) →
Lamp, OFF, (6.25 s) → Lamp+Drill simultaneously, ON,
(2.5 s) → All appliances, OFF.

The only difference between these two scenarios is that the
lamp is off for 0.25 s in the first scenario whereas it is off for
6.25 s in the second one. Fig. 6 shows the current signals of
the aggregate scenarios. The vacuum cleaner has a particularly
interesting transient waveform containing two working phases
with distinct transients. These two phases would have been,
most likely, easily confused as two separate appliances if we
were in a blind configuration. Hence, a system that is able
to create controllable scenarios should help detecting such
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Fig. 6. Examples of aggregation scenarios (current signals). Lamp+Drill
means that the two appliances were turned-on at the same time

ambiguous cases. Another interesting observation is that the
transient for the (Lamp+Drill) is different between the two
scenarios. This is due to the fact that for scenario I, the drill
motor, after turning-off, keeps rotating for a certain time due
to inertia. If we turn it on again, then, it will draw less current
than if it were still at a stopping position and we get a different
turn-on transient.

V. CONCLUSION

We have presented a new measurement system that should
allow the establishment of a dataset that can push forward the
high sampling frequency NILM. The acquired signals should
also allow a better analysis and understanding of the turn-on
transient and why not the turn-off part too.

Also, having the flexibility to control the turn-on and
turn-off instants and creating different measurement scenarios
should allow the testing of the robustness of high sampling fre-
quency disaggregation algorithms under different controllable
real-life scenarios.

The measurement system is also adapted to low sampling
frequency measurements. We have tested it for 24 hours but
more tests have to be done to confirm its low sampling
frequency measurement capabilities.
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