
Graphical Closure Rules for Unsupervised Load

Classification in NILM Systems
Joseph Krall, Ph.D.

Chief Data Scientist, LoadIQ

800 Haskell Street, Reno, NV, USA

Sohei Okamoto, Ph.D.

Senior Software Engineer, LoadIQ

800 Haskell Street, Reno, NV, USA

Hampden Kuhns, Ph.D.

CEO/Co-Founder, LoadIQ

800 Haskell Street, Reno, NV, USA

Abstract—Unsupervised NILM requires a robust approach to

quantify energy usage from electrical loads operating over a broad

range of power states and temporal schedules. To be truly

unsupervised, the system must automatically scale its detection

resolution and find patterns that describe the state of major loads

on a circuit. A framework of discretizing an energy time series

into clustered transitions and steady states that creates a directed

multi-graph with steady states as nodes and transitions as edges is

presented. Cycles in the graph represent load behavior patterns

where one or more loads change state and return to their original

state. The sequences of transitions in these cycles are used to

qualify the existence of individual loads. Internal metrics are

presented that indicate the self-consistency of the load

classification without the presence of ground truth datasets.

Keywords— NILM, graph theory, unsupervised classification

I. INTRODUCTION

One of the primary applications of NILM is to break down
and disaggregate power time series into component signals that
represent the major energy consuming and high demand power
loads on a circuit. With this information, users can target energy
conservation measures at loads that have the greatest potential
for savings. The value of NILM is maximized when major load
disaggregation can be performed with minimal hardware,
installation, and human supervision costs.

Great progress in algorithm formulation has been made in
recent years with supervised methods that leverage training
datasets to recognize individual loads on a circuit [1]. The
practicality of supervised algorithms may lose value without the
availability of a wide variety of public datasets. To this end,
unsupervised algorithms may be more useful as they do not
require the training from ground truth to operate.

Toward unsupervised deployments, event based NILM
systems as defined by [2] must automatically: (1) choose the
resolution for event detection based on the aggregate power time
series [3-5]; (2) recognize temporal patterns or features in
recurring loads [6-8]; (3) distinguish transition events between
single loads and combinations of individual loads [9]; (4) infer
the load state of isolated loads throughout time [10]; and (5)
estimate the load energy consumption from these results [11].
Optimizations of each step are topics of ongoing research and
this paper addresses systematizing steps 2 through 4.

As new NILM approaches are being developed, initial
emphasis is rightly placed on evaluating performance with
datasets that have ground truth measurements [1,2,12].
Complexity as described by [13] is an independent property of
circuits and will affect the performance of load disaggregation.
In the primary application of providing a disaggregation of
major loads for ‘real world’ use cases, there will be no ground

truth and the quality of results need to be assessed based on other
metrics related to how loads fit a predefined model. For users
to have confidence in NILM results, self-consistency metrics
must indicate the reliability of results without a comparison to
ground truth results.

We present a load recognition approach that exploits the
Zero Loop Sum Constraint (ZLSC) [14] and a graphical model
based on steady state and transition clustering to isolate
individual loads, detect combination transitions, and determine
if an isolated load may have multiple instances on a circuit.

II. EVENT DETECTION AND CLUSTERING

Event based NILM systems use a filter to detect when a
power signal is in a steady state or transition. Numerous
methods of varying complexity have been developed to
discretize an aggregate power time series [3,15,16]. In this
application, we use a simple windowed rate of change indicator
to determine if a power sample is within a transition. A fixed
threshold |dP/dt| is applied to the dataset. Periods below the
threshold are designated at steady states if they exceed a
minimum time duration t_min. Transition features are extracted
from the difference in power from the first interval of a steady
state dt and the last interval of the previous steady state. Steady
state features are extracted from the entire period.

Features may be any set of discrete measurements derived
from the aggregated time series. For this example, the average
normalized [14] power profile (32 samples per voltage cycle) is
extracted for each steady state and transition. These features are
clustered from streaming data using a fixed-radius nearest
neighbor method that ensures the intra cluster diameter is less
than 2 times a predefined RMS cluster distance in Watts. The
results approximate agglomerative clustering with a dendrogram
cut at a threshold [17]. Power profile data may be reclustered to
change the resolution and number of transition and steady state
clusters. The cluster diameter represents a minimum detectable
load power that can be resolved with this approach.

III. GRAPHICAL CLOSURE RULES

A multidigraph is a graph of nodes and directed edges where
edges have their own identity. In other words, there can be many
edges between a same pair of nodes. The sequence of steady
state and transition cluster labels represent nodes and edges on a
multidigraph: every transition is an edge that is directed from a
starting steady state to an ending steady state.

Edges thereby become unique sequences which form a
clustered power time series with Start, Transition, End, and
Count fields. These STEC edges then become the basis of a
STEC multidigraph that represents the dataset graphically. This
approach is similar to the one described in [18].

Each STEC record can be weighted to signify its error
residual. Let θ be the maximum allowed cluster radius (RMS
distance in Watts). S, T, E are the three sets of clustered profile
values for start, transition, and end cluster profiles within a
STEC record. C is the number of edges in the record, and N =
32 is the number of values within each profile. Then, the edge
weighted residual (EWR) value can be calculated as:

𝐸𝑊𝑅 =
1

√3𝜃2𝐶2
 ∗ √

1

𝑁
∑ (𝑠 + 𝑡 − 𝑒)2

𝑠,𝑡,𝑒 ∈ 𝑆,𝑇,𝐸

The edge weight (EWR) has the property of being lower for
edges where the transition profile clusters are approximately
equivalent to the difference in steady state period clusters. If a
steady state power drifts slowly (with respect to the event
threshold) without triggering an event, the edge weight will be
larger than a more consistent square wave step.

Directed cycles in the STEC graph represent a path of
connected edges that has the same start and end nodes. A cycle
is related to the ZLSC [14] and represents a series of transitions
that return to the original steady state cluster profile. Self-loops
are edges where the source and target node are the same and are
cycles with path length of 1. Transitions that are predominantly
in self-loops are classified as trivial in that they represent events
that did not cause change in steady state.

Transitions in longer cycles represent patterns of one or more
loads that actuate on and off. These groupings of transitions are
called closure rules, and they are the basis for extracting features
of major loads on a circuit.

Fast cycle detection in directed graphs is a well-studied and
optimized algorithm [19]. We use NetworkX on a Python
platform to aid with implementation, which is a graph analysis
package for the Python programming language and contains
source code for cycle detection [20]. Once cycles have been
detected, the STEC edges that compose the cycles are used to
form Closure Rules that have unique collections of transitions.

 Each closure rule has a weighted residual term (CWR) that
signifies its error residual in the same manner that STEC edges
are rated. The weights of STEC edges in the closure rule are
combined using a series resistance model, where EWR
represents the edge weighted residual of each edge in the rule:

𝐶𝑊𝑅 =
1

∑ 1
𝐸𝑊𝑅

IV. CLOSURE RULE SIMPLIFICATION

It is useful for closure rules to be reduced and simplified into
a minimal most-informative subset of rules. As a first step, we
identify candidate trivial transitions as those closure rules with
cycles of length 1, as seen in the Python pseudocode for method

removeTrivials() in Fig 1. When the closure rules are
sorted by weight, only those candidate transitions which do not
also appear in stronger closure rules are trivial. The

strongestRule() method returns the rule which a given
transition appears in and has the lowest weight. Since identified
trivial transitions do not represent any load changes, they are
unneeded and it is thereby a simplification task to remove them
entirely from all closure rules.

A further simplification step is a refactoring step which
allows a closure rule of lower weight to eliminate its transitions
from a longer-path-higher-weight rule as in the pseudo code for

method refactor(). When smaller patterns of transitioning
loads may appear in longer closure rules, the smaller patterns are
strengthened in a parallel resistance model manner as they “eat”
the pattern from the longer rule. This also simplifies longer rules
so that further useable patterns may emerge.

Lastly, all closure rules are then reduced once more so that
every rule does not have all of its transitions better explained in
stronger rules. In this case, the rule has no value since its
transitions appear in stronger rules, and it can therefore be

deleted, as shown in pseudocode for bestExplanation().

def strongestRule(transition, rules):

 for rule in rules:

 if transition in rule.transitions: return rule

def removeTrivials(rules):

 sort(rules)

 for rule in rules:

 if rule.length == 1:

 if rule == strongestRule(rule.transitions[0],rules):

 rule.transitions[0].mark_trivial()

def refactor(rules):

 sort(rules)

 for i,sub_rule in enumerate(rules):

 for k,source_rule in enumerate(rules):

 if k > i and source_rule.contains(sub_rule):

 source_rule.remove(sub_rule)

 sub_rule.weight = 1/(1/source_rule.weight +

 1/sub_rule_weight)

def bestExplanation(rules):

 sort(rules)

 for rule in rules:

 is_useless_rule = True #Assumption

 for transition in rule.transitions:

 if rule == strongestRule(transition):

 is_useless_rule = False #Contradiction

 break

 if is_useless_rule: rule.to_delete = True

def RMS(t1, t2):

 return sqrt(avg(sumsq(t1,t2)))

def findMirrors(transitions):

 for t1 in transitions:

 for t2 in transitions:

 if not t1 == t2 and RMS(t1,t2) < 2*cluster_radius:

 addClosureRule(t1, t2)

Fig 1. Python pseudocode for methods of simplifying closure rules.

Beyond reducing the set of closure rules to a smallest, most-
informative subset, sometimes transitions do not appear to be in
behavioral patterns as would be found via cycles in the STEC
graph. This may happen when there is a very long cycle that
was not discovered, due to expenses of computational costs, or
when a load behaves unusual to its normative behavior. In these
cases, we use a mirror process which finds pairs of opposite
signed transitions such that their sum profile has an RMS
distance less than the clustering diameter. These mirror rules are
not weighted as normal closure rules, but they are sorted
separately based on their RMS distance proximity.

The finished closure rules result in a list of relationships
between transition clusters that are associated with one or more
loads. This approach also has the ability to identify transitions
that represent a combination of loads such as when two unique
loads turn on independently but both turn off at the same point
in time. The next step then, is in using the resulting finalized
closure rules as a means of identifying individual loads.

V. LOAD DETECTION

Here, we describe the process for using our simplified
closure rules as a means of detecting loads. First, closure rules
are sorted in ascending order by weight. An automated process
builds relationships between transitions and loads based on the
following definitions.

Core Rule: a lowest weight closure rule of length 2 (a positive

and negative transition, i.e. a 1x1 rule) in which neither

transition is included in a lower weight rule.

Cousin Rule: a 1x1 rule of length 2 that best explains one of its

transitions, but the other is better explained in a core rule.

Combination Rule: a rule with length greater than 2 that affects

multiple loads; the notation MxN indicates that the rule has M

on transitions and N off transitions.

Singular Transition: within any rule, the singular transition is

the ‘1’ of its type (1xN or Mx1).

Component Transition: the other transitions which lie in the

side of the ‘M’ or ‘N’.

The load creation process searches for core rules (see

findCoreLoads() in Fig 3), in which both transitions are
undefined in rules of lesser weight. When we encounter 1x1
rules in which one or more of its transitions were already
defined, then this gives us cousin rules that add transitions to
existing load definitions. We keep track of how many steps it
takes for a transition to reach a core rule. To prevent over-
chaining of cousin rules, we only allow a rule to be a cousin to
a core if it has not chained more than two steps.

Within any closure rule, it is expected that the sum of both
sides (in transition power space) is roughly equal to zero. This
allows us to manipulate cases of rules where there exists only
one unknown transition in the rule, algebraically.

 Consider a 2x1 rule with three transitions (T1, T2 and T3),
and that transitions T1 & T3 are known, but not T2. Dictionary
notations are used to document the sparse vector state
change (value) of each load (key). A load count of
{L1: x, L2: y} implies that load L1 turns on x times and load
L2 turns on y times. If T1 = {L1:1} and T3 = {L2:1}, then we
compute, algebraically, that T2 = {L1: -1, L2: -1}. Thus, T2 is
a combination of two loads turning off simultaneously.

 The transition-to-load mapping process runs until its
methods can no longer find any further useful closure rules.
Hence, the output is a dictionary that defines as many transitions
as possible. This dictionary is then used in a later step to map
the transition load changes to steady states. Since this step is
beyond the scope of this paper, we omit its details in favor of
submitting more detail on the performance metrics used to
evaluate the goodness of our graphical approach.

VI. PERFORMANCE METRICS FOR CLOSURE RULE EXTRACTION

Without assumptions to the type of load, useful summary
metrics include: %solved-non-trivial-transitions and %solved-
sum-abs-transition-power. Threshold values may be optimized
to maximize these terms. We computed these metrics for a
BLUED case study, as seen in Table I. In general, reducing
event detection and clustering thresholds improves the detection
of smaller appliances, however this comes at the expense of
increased computational costs and reducing the repeatability of
closure rules for less frequent loads.

loads = []

rules = gatherClosureRules() #See Section III

simplifyClosureRules(rules) #See Section IV

def createLoad(transitions):

 load = len(loads)

 for t in transitions:

 if t.is_positive: t.loadcount = {load: +1}

 else: t.loadcount = {load: -1}

 loads.append(transitions)

def findCoreLoads(rules):

 for rule in rules:

 if rule.length == 2 == countUnknowns(rule.transitions):

 if rule == strongestRule(rule.transitions[0]):

 if rule == strongestRule(rule.transitions[1]):

 createLoad(rule.transitions)

def solveRule(transitions):

 unknown = getUnknownTransition(transitions)

 knowns = getKnownTransitions(transitions)

 unknown.loadcount = negative(dictSum(knowns))

def solveComboRules(rules):

 for rule in rules:

 if rule.length > 2:

 singular = getSingularTransition(rule.transitions)

 components = getComponentTransitions(rule.transitions)

 if countUnknowns(singular, components) == 1:

 solveRule(rule.transitions)

Fig 3. Python pseudocode for methods of mapping transitions to loads.

Fig 2. Power time series (left) transformed to a multidigraph (right). In this diagram, steady state clusters are nodes denoted

with letters and transition clusters are edges denoted by Ti. Numbers in parentheses represent the counts profiles contained

within the transition cluster, indicating multi-edges. The vertical axis represents watts. Colored edges represent loads.

VII. INDIVIDUAL LOAD CONSISTENCY METRICS

Load Closure Rule Weight (CRW) for a load is the weight of
the core rule defining the load, and should be minimized to
indicate that the cycles have been properly detected. Users can
assess the consistency of one disaggregated load with respect to
another based on these values.

Transition Imbalance (TI) describes the relative difference
in the number of defined off and on transitions for a load. If the
count of offs and ons do not agree, then there are either false
positive or false negative associations between the load and the
transitions. This term represents a minimum of the classification
error. TI is calculated as a percentage difference:
|num_on – num_off| / (num_on + num_off).

Loads isolated with closure rules are binary in that associated
transitions turn the load on or off. In some cases, continuously
variable devices may be detectable when the base level on and
off transitions form a closure rule. Multistate loads as described
by [1] are separated into their individual components (e.g. an air
conditioner’s fan and compressor). This approach does not
assume or require that all loads are single count (i.e. that only
one load with the defining transitions exists on each circuit).
Banks of identical lights, roof top air conditioners, and
computers in offices are examples of loads that may be
multicount. A load will have one more state than its number of
instances on a circuit.

Single Count Error (SCE) is the fraction that a load
sequentially changes state in the same direction to the total
number of load transitions. Single count loads should have a
minimum of these types of errors. Valid multicount loads will
have a small imbalance between the counts of on-on (on
transition followed by another on transition) and off-off events.
SCE is computed as a percentage difference: |num_on_on –
num_off_off| / (num_on_on + num_off_off).

VIII. RESULTS

Results are given in Table I and Table II for our case study
using the BLUED dataset [16] (only phase A), with an event
threshold of 2W/s across 3s and clustering fixed radius of 24
watts. The loads discovered are compared with the ground truth
results published by [21-22].

Table I shows some basic summary statistics for our results
in working with BLUED. In all, our process found five reliable
loads, of which three of them we could confidently match to
ground truth data referenced in [21-22]. In Table II, the Event
Error column refers to the percent difference in the number of
ground truth events and the number of events attributed to a load
via our process. For our three loads, the event error was less
than 3%, indicating that our results are fairly reliable. For the
fridge load, we note that the event error was due to missing
events which could be defroster events identified in a separate,
less reliable load.

In total, 38 of the 39 transition clusters were defined. The
%Solved Non-Trivial Transitions row of Table I is at 98.4%,
leaving just a single transition cluster and its profiles as
undefined due to a lack of frequency to warrant a satisfying
closure rule. When we consider the absolute transition power of
these solved transitions, 94.2% of the power was solved,

suggesting that the one unsolved transition was also a very high-
powered transition. Given that very little energy is consumed
by what we were unable to disaggregate, these results indicate
very strong performance with detecting loads for BLUED.

In Table II, we note that the 3% single count error associated
with the fridge load (which amounts to 9 events that were
improperly labeled) could have been due to the presence of a
load with similar power. With a visual observation of the raw
data, we can indeed see that it would be easy to make the same
mistake. On the other hand, the chopper and compressor loads,
which are very unique and infrequent loads, had zero errors.

Mapping the transitions to steady state periods to fully
disaggregate the energy consumption is beyond the scope of this
paper. However, optimization and pattern recognition methods
have proved to be effective once load features have been inferred
[23-25]. As future work, we are looking to improve upon such
techniques while utilizing our graphical closure rule approach.

TABLE I: SUMMARY STATISTICS FOR BLUED PHASE A.

#Non Trivial Events 904

#Steady State Clusters 35

#Transition Clusters 39

#Unique STEC Edges 155

#Unique Cycles 27

#Loads 5

%Solved Non-Trivial Transitions 98.4%

%Solved Sum Abs Transition Power 94.2%

TABLE II: STATISTICS FOR TOP THREE COMPARABLE LOADS FROM

BLUED PHASE A. EVENT ERROR IS THE FRACTION OF ESTIMATED TO ACTUAL

GROUND TRUTH NUMBER OF EVENTS. SCE, CRW AND TI ARE DEFINED IN

SECTION VI.

Load Event

Error
Single Count

Error (SCE)

Closure Rule

Weight (CRW)
Transition

Imbalance (TI)
Fridge 0.024 0.030 0.004 0.008

Chopper 0.000 0.000 0.171 0.000

Compressor 0.000 0.000 0.478 0.000

IX. CONCLUSIONS

We present an unsupervised method for NILM load isolation
using graph theory cycle detection. The approach extends the
ability of matching ‘on’ transitions with ‘off’ transitions that are
negatively related since transitions are linked through cycles
involving multiple loads. An elimination factorization reduces
the transitions in the cycles to represent independent sets of
loads. Combination transitions are then identified and defined
in terms of loads with stronger cycle weight. Consistency
metrics are proposed that yield a relative or absolute indication
of the quality of fit without the existence of ground truth data.
From our results, we show that this process can attain an
accuracy with error rate less than 3% on the BLUED dataset
when compared to ground truth.

REFERENCES

[1] Zoha, Ahmed, Alexander Gluhak, Muhammad Ali Imran, and Sutharshan
Rajasegarar. "Non-intrusive load monitoring approaches for
disaggregated energy sensing: A survey." Sensors 12, no. 12 (2012):
16838-16866.

[2] Bonfigli, Roberto, Stefano Squartini, Marco Fagiani, and Francesco
Piazza. "Unsupervised algorithms for non-intrusive load monitoring: An
up-to-date overview." In Environment and Electrical Engineering
(EEEIC), 2015 IEEE 15th International Conference on, pp. 1175-1180.
IEEE, 2015.

[3] Jin, Yuanwei, Eniye Tebekaemi, Mario Berges, and Lucio Soibelman.
"Robust adaptive event detection in non-intrusive load monitoring for
energy aware smart facilities." In ICASSP, pp. 4340-4343. 2011.

[4] Laasch, Frederik, Alain Dieterlen, and Dirk Benyoucef. "Event detection
using adaptive thresholds for non-intrusive load monitoring." BW-CAR|
SINCOM 50 (2015): 63.

[5] Barsim, Karim Said, Roman Streubel, and Bin Yang. "Unsupervised
Adaptive Event Detection for Building-Level Energy Disaggregation."
Proceedings of power and energy student summit (PESS), Stuttgart,
Germany (2014).

[6] Kolter, J. Zico, and Tommi Jaakkola. "Approximate inference in additive
factorial hmms with application to energy disaggregation." In
International conference on artificial intelligence and statistics, pp. 1472-
1482. 2012.

[7] Elhamifar, Ehsan, and Shankar Sastry. "Energy Disaggregation via
Learning Powerlets and Sparse Coding." In AAAI, pp. 629-635. 2015

[8] Guo, Zhenyu, Z. Jane Wang, and Ali Kashani. "Home appliance load
modeling from aggregated smart meter data." Power Systems, IEEE
Transactions on 30, no. 1 (2015): 254-262.

[9] Pochacker, Manfred, Dominik Egarter, and Wilfried Elmenreich.
"Proficiency of Power Values for Load Disaggregation." Instrumentation
and Measurement, IEEE Transactions on 65, no. 1 (2016): 46-55.

[10] Figueiredo, Marisa, Bernardete Ribeiro, and Ana de Almeida. "On the
optimization of appliance loads inferred by probabilistic models." In
Proceedings of the 2nd International Workshop on Non-Intrusive Load
Monitoring. 2014.

[11] Egarter, Dominik, and Wilfried Elmenreich. "Autonomous load
disaggregation approach based on active power measurements." In
Pervasive Computing and Communication Workshops (PerCom
Workshops), 2015 IEEE International Conference on, pp. 293-298. IEEE,
2015.

[12] Kolter, J. Zico, and Matthew J. Johnson. "REDD: A public data set for
energy disaggregation research." In Workshop on Data Mining
Applications in Sustainability (SIGKDD), San Diego, CA, vol. 25, pp.
59-62. 2011.

[13] Egarter, Dominik, Manfred Pöchacker, and Wilfried Elmenreich.
"Complexity of power draws for load disaggregation." arXiv preprint
arXiv:1501.02954 (2015).

[14] G.W Hart, “Nonintrusive appliance load monitoring,” Proc. IEEE, vol.
80, no. 12, pp. 1870-1891, Dec. 1992

[15] Leeb, Steven B., Steven R. Shaw, and JJames L. Kirtley Jr. "Transient
event detection in spectral envelope estimates for nonintrusive load
monitoring." Power Delivery, IEEE Transactions on 10, no. 3 (1995):
1200-1210.

[16] Anderson, Kyle D., Mario E. Bergés, Adrian Ocneanu, Diego Benitez,
and José MP Moura. "Event detection for non intrusive load monitoring."
In IECON 2012-38th Annual Conference on IEEE Industrial Electronics
Society, pp. 3312-3317. IEEE, 2012.

[17] Goncalves, Hugo, Adrian Ocneanu, Mario Berges, and R. H. Fan.
"Unsupervised disaggregation of appliances using aggregated
consumption data." In The 1st KDD Workshop on Data Mining
Applications in Sustainability (SustKDD). 2011.

[18] Streubel, Roman, and Bin Yang. "Identification of electrical appliances
via analysis of power consumption." In Universities Power Engineering
Conference (UPEC), 2012 47th International, pp. 1-6. IEEE, 2012.

[19] Johnson, Donald B. "Finding all the elementary circuits of a directed
graph." SIAM Journal on Computing 4, no. 1 (1975): 77-84.

[20] Hagberg, Aric A., Daniel A. Schult and Pieter J. Swart, “Exploring
network structure, dynamics, and function using NetworkX”, in
Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel
Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA
USA), pp. 11–15, Aug 2008

[21] Giri, Suman, and Mario Bergés. "An energy estimation framework for
event-based methods in Non-Intrusive Load Monitoring." Energy
Conversion and Management 90 (2015): 488-498.

[22] Anderson, Kyle, Adrian Ocneanu, Diego Benitez, Derrick Carlson,
Anthony Rowe, and Mario Berges. "BLUED: A fully labeled public
dataset for event-based non-intrusive load monitoring research." In
Proceedings of the 2nd KDD workshop on data mining applications in
sustainability (SustKDD), pp. 1-5. 2012.

[23] Liang, J.; Ng, S.K.K.; Kendall, G.; Cheng, J.W.M. Load signature study
Part I: Basic concept, structure, and methodology. IEEE Trans. Power
Del. 2010, 25, 551–560.

[24] Suzuki, K.; Inagaki, S.; Suzuki, T.; Nakamura, H.; Ito, K. Nonintrusive
Appliance Load Monitoring. Based on Integer Programming. In
Proceedings of SICE Annual Conference, Tokyo, Japan, 20–22 August
2008; Volume 174, pp. 2742–2747.

[25] Marchiori, A.; Hakkarinen, D.; Han, Q.; Earle, L. Circuit-level load
monitoring for household energy management. IEEE Pervas. Comput.
2011, 10, 40–48.

