
Graphical Closure Rules for Unsupervised Load 

Classification in NILM Systems 
Joseph Krall, Ph.D. 

Chief Data Scientist, LoadIQ 

800 Haskell Street, Reno, NV, USA 

Sohei Okamoto, Ph.D. 

Senior Software Engineer, LoadIQ 

800 Haskell Street, Reno, NV, USA 

Hampden Kuhns, Ph.D. 

CEO/Co-Founder, LoadIQ 

800 Haskell Street, Reno, NV, USA 

Abstract—Unsupervised NILM requires a robust approach to 

quantify energy usage from electrical loads operating over a broad 

range of power states and temporal schedules.  To be truly 

unsupervised, the system must automatically scale its detection 

resolution and find patterns that describe the state of major loads 

on a circuit.  A framework of discretizing an energy time series 

into clustered transitions and steady states that creates a directed 

multi-graph with steady states as nodes and transitions as edges is 

presented.  Cycles in the graph represent load behavior patterns 

where one or more loads change state and return to their original 

state.  The sequences of transitions in these cycles are used to 

qualify the existence of individual loads.  Internal metrics are 

presented that indicate the self-consistency of the load 

classification without the presence of ground truth datasets.  
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I. INTRODUCTION 

One of the primary applications of NILM is to break down 
and disaggregate power time series into component signals that 
represent the major energy consuming and high demand power 
loads on a circuit.  With this information, users can target energy 
conservation measures at loads that have the greatest potential 
for savings.  The value of NILM is maximized when major load 
disaggregation can be performed with minimal hardware, 
installation, and human supervision costs. 

Great progress in algorithm formulation has been made in 
recent years with supervised methods that leverage training 
datasets to recognize individual loads on a circuit [1].  The 
practicality of supervised algorithms may lose value without the 
availability of a wide variety of public datasets.  To this end, 
unsupervised algorithms may be more useful as they do not 
require the training from ground truth to operate. 

Toward unsupervised deployments, event based NILM 
systems as defined by [2] must automatically: (1) choose the 
resolution for event detection based on the aggregate power time 
series [3-5]; (2) recognize temporal patterns or features in 
recurring loads [6-8]; (3) distinguish transition events between 
single loads and combinations of individual loads [9]; (4) infer 
the load state of isolated loads throughout time [10]; and (5) 
estimate the load energy consumption from these results [11].  
Optimizations of each step are topics of ongoing research and 
this paper addresses systematizing steps 2 through 4. 

As new NILM approaches are being developed, initial 
emphasis is rightly placed on evaluating performance with 
datasets that have ground truth measurements [1,2,12].  
Complexity as described by [13] is an independent property of 
circuits and will affect the performance of load disaggregation.  
In the primary application of providing a disaggregation of 
major loads for ‘real world’ use cases, there will be no ground 

truth and the quality of results need to be assessed based on other 
metrics related to how loads fit a predefined model.  For users 
to have confidence in NILM results, self-consistency metrics 
must indicate the reliability of results without a comparison to 
ground truth results. 

We present a load recognition approach that exploits the 
Zero Loop Sum Constraint (ZLSC) [14] and a graphical model 
based on steady state and transition clustering to isolate 
individual loads, detect combination transitions, and determine 
if an isolated load may have multiple instances on a circuit. 

II. EVENT DETECTION AND CLUSTERING 

Event based NILM systems use a filter to detect when a 
power signal is in a steady state or transition.  Numerous 
methods of varying complexity have been developed to 
discretize an aggregate power time series [3,15,16].  In this 
application, we use a simple windowed rate of change indicator 
to determine if a power sample is within a transition.  A fixed 
threshold |dP/dt| is applied to the dataset.  Periods below the 
threshold are designated at steady states if they exceed a 
minimum time duration t_min.  Transition features are extracted 
from the difference in power from the first interval of a steady 
state dt and the last interval of the previous steady state.  Steady 
state features are extracted from the entire period.  

Features may be any set of discrete measurements derived 
from the aggregated time series.  For this example, the average 
normalized [14] power profile (32 samples per voltage cycle) is 
extracted for each steady state and transition.  These features are 
clustered from streaming data using a fixed-radius nearest 
neighbor method that ensures the intra cluster diameter is less 
than 2 times a predefined RMS cluster distance in Watts.  The 
results approximate agglomerative clustering with a dendrogram 
cut at a threshold [17].  Power profile data may be reclustered to 
change the resolution and number of transition and steady state 
clusters.  The cluster diameter represents a minimum detectable 
load power that can be resolved with this approach. 

III. GRAPHICAL CLOSURE RULES 

A multidigraph is a graph of nodes and directed edges where 
edges have their own identity.  In other words, there can be many 
edges between a same pair of nodes.  The sequence of steady 
state and transition cluster labels represent nodes and edges on a 
multidigraph: every transition is an edge that is directed from a 
starting steady state to an ending steady state.   

Edges thereby become unique sequences which form a 
clustered power time series with Start, Transition, End, and 
Count fields.  These STEC edges then become the basis of a 
STEC multidigraph that represents the dataset graphically.  This 
approach is similar to the one described in [18]. 



Each STEC record can be weighted to signify its error 
residual.  Let θ be the maximum allowed cluster radius (RMS 
distance in Watts). S, T, E are the three sets of clustered profile 
values for start, transition, and end cluster profiles within a 
STEC record.  C is the number of edges in the record, and N = 
32 is the number of values within each profile.  Then, the edge 
weighted residual (EWR) value can be calculated as: 
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1

√3𝜃2𝐶2
 ∗  √

1

𝑁
∑ (𝑠 + 𝑡 − 𝑒)2

𝑠,𝑡,𝑒 ∈ 𝑆,𝑇,𝐸

 

The edge weight (EWR) has the property of being lower for 
edges where the transition profile clusters are approximately 
equivalent to the difference in steady state period clusters.  If a 
steady state power drifts slowly (with respect to the event 
threshold) without triggering an event, the edge weight will be 
larger than a more consistent square wave step. 

Directed cycles in the STEC graph represent a path of 
connected edges that has the same start and end nodes.  A cycle 
is related to the ZLSC [14] and represents a series of transitions 
that return to the original steady state cluster profile.  Self-loops 
are edges where the source and target node are the same and are 
cycles with path length of 1.  Transitions that are predominantly 
in self-loops are classified as trivial in that they represent events 
that did not cause change in steady state. 

Transitions in longer cycles represent patterns of one or more 
loads that actuate on and off.  These groupings of transitions are 
called closure rules,  and they are the basis for extracting features 
of major loads on a circuit. 

Fast cycle detection in directed graphs is a well-studied and 
optimized algorithm [19].  We use NetworkX on a Python 
platform to aid with implementation, which is a graph analysis 
package for the Python programming language and contains 
source code for cycle detection [20].  Once cycles have been 
detected, the STEC edges that compose the cycles are used to 
form Closure Rules that have unique collections of transitions. 

 Each closure rule has a weighted residual term (CWR) that 
signifies its error residual in the same manner that STEC edges 
are rated.  The weights of STEC edges in the closure rule are 
combined using a series resistance model, where EWR 
represents the edge weighted residual of each edge in the rule: 

𝐶𝑊𝑅 =  
1

∑ 1
𝐸𝑊𝑅

 

IV. CLOSURE RULE SIMPLIFICATION 

It is useful for closure rules to be reduced and simplified into 
a minimal most-informative subset of rules.  As a first step, we 
identify candidate trivial transitions as those closure rules with 
cycles of length 1, as seen in the Python pseudocode for method 

removeTrivials() in Fig 1.  When the closure rules are 
sorted by weight, only those candidate transitions which do not 
also appear in stronger closure rules are trivial.  The 

strongestRule() method returns the rule which a given 
transition appears in and has the lowest weight.  Since identified 
trivial transitions do not represent any load changes, they are 
unneeded and it is thereby a simplification task to remove them 
entirely from all closure rules. 

A further simplification step is a refactoring step which 
allows a closure rule of lower weight to eliminate its transitions 
from a longer-path-higher-weight rule as in the pseudo code for 

method refactor().  When smaller patterns of transitioning 
loads may appear in longer closure rules, the smaller patterns are 
strengthened in a parallel resistance model manner as they “eat” 
the pattern from the longer rule.  This also simplifies longer rules 
so that further useable patterns may emerge. 

Lastly, all closure rules are then reduced once more so that 
every rule does not have all of its transitions better explained in 
stronger rules.  In this case, the rule has no value since its 
transitions appear in stronger rules, and it can therefore be 

deleted, as shown in pseudocode for bestExplanation(). 

def strongestRule(transition, rules): 

   for rule in rules: 

      if transition in rule.transitions: return rule 

 

def removeTrivials(rules): 

   sort(rules) 

   for rule in rules: 

      if rule.length == 1: 

        if rule == strongestRule(rule.transitions[0],rules): 

           rule.transitions[0].mark_trivial() 

 

def refactor(rules): 

   sort(rules) 

   for i,sub_rule in enumerate(rules): 

      for k,source_rule in enumerate(rules): 

         if k > i and source_rule.contains(sub_rule): 

            source_rule.remove(sub_rule) 

            sub_rule.weight = 1/(1/source_rule.weight +  

                                 1/sub_rule_weight) 

 

def bestExplanation(rules): 

   sort(rules) 

   for rule in rules: 

      is_useless_rule = True #Assumption 

      for transition in rule.transitions: 

         if rule ==  strongestRule(transition): 

            is_useless_rule = False #Contradiction 

            break 

      if is_useless_rule: rule.to_delete = True 

 

def RMS(t1, t2): 

   return sqrt(avg(sumsq(t1,t2))) 

 

def findMirrors(transitions): 

   for t1 in transitions: 

      for t2 in transitions: 

         if not t1 == t2 and RMS(t1,t2) < 2*cluster_radius: 

            addClosureRule(t1, t2) 

Fig 1.  Python pseudocode for methods of simplifying closure rules. 

Beyond reducing the set of closure rules to a smallest, most-
informative subset, sometimes transitions do not appear to be in 
behavioral patterns as would be found via cycles in the STEC 
graph.  This may happen when there is a very long cycle that 
was not discovered, due to expenses of computational costs, or 
when a load behaves unusual to its normative behavior.  In these 
cases, we use a mirror process which finds pairs of opposite 
signed transitions such that their sum profile has an RMS 
distance less than the clustering diameter.  These mirror rules are 
not weighted as normal closure rules, but they are sorted 
separately based on their RMS distance proximity. 

The finished closure rules result in a list of relationships 
between transition clusters that are associated with one or more 
loads.  This approach also has the ability to identify transitions 
that represent a combination of loads such as when two unique 
loads turn on independently but both turn off at the same point 
in time.  The next step then, is in using the resulting finalized 
closure rules as a means of identifying individual loads. 



V. LOAD DETECTION 

Here, we describe the process for using our simplified 
closure rules as a means of detecting loads.  First, closure rules 
are sorted in ascending order by weight.  An automated process 
builds relationships between transitions and loads based on the 
following definitions.   

Core Rule: a lowest weight closure rule of length 2 (a positive 

and negative transition, i.e. a 1x1 rule) in which neither 

transition is included in a lower weight rule. 

Cousin Rule: a 1x1 rule of length 2 that best explains one of its 

transitions, but the other is better explained in a core rule. 

Combination Rule: a rule with length greater than 2 that affects 

multiple loads; the notation MxN indicates that the rule has M 

on transitions and N off transitions. 

Singular Transition: within any rule, the singular transition is 

the ‘1’ of its type (1xN or Mx1). 

Component Transition: the other transitions which lie in the 

side of the ‘M’ or ‘N’. 

The load creation process searches for core rules (see 

findCoreLoads() in Fig 3), in which both transitions are 
undefined in rules of lesser weight.  When we encounter 1x1 
rules in which one or more of its transitions were already 
defined, then this gives us cousin rules that add transitions to 
existing load definitions.  We keep track of how many steps it 
takes for a transition to reach a core rule.  To prevent over-
chaining of cousin rules, we only allow a rule to be a cousin to 
a core if it has not chained more than two steps. 

Within any closure rule, it is expected that the sum of both 
sides (in transition power space) is roughly equal to zero.  This 
allows us to manipulate cases of rules where there exists only 
one unknown transition in the rule, algebraically. 

 Consider a 2x1 rule with three transitions (T1, T2 and T3), 
and that transitions T1 & T3 are known, but not T2.  Dictionary 
notations are used to document the sparse vector state 
change (value) of each load (key).   A load count of        
{L1: x, L2: y} implies that load L1 turns on x times and load 
L2 turns on y times.  If T1 = {L1:1} and T3 = {L2:1}, then we 
compute, algebraically, that T2 = {L1: -1, L2: -1}.  Thus, T2 is 
a combination of two loads turning off simultaneously. 

 The transition-to-load mapping process runs until its 
methods can no longer find any further useful closure rules.  
Hence, the output is a dictionary that defines as many transitions 
as possible.  This dictionary is then used in a later step to map 
the transition load changes to steady states.  Since this step is 
beyond the scope of this paper, we omit its details in favor of 
submitting more detail on the performance metrics used to 
evaluate the goodness of our graphical approach. 

VI. PERFORMANCE METRICS FOR CLOSURE RULE EXTRACTION 

Without assumptions to the type of load, useful summary 
metrics include: %solved-non-trivial-transitions and %solved-
sum-abs-transition-power.  Threshold values may be optimized 
to maximize these terms.  We computed these metrics for a  
BLUED case study, as seen in Table I.  In general, reducing 
event detection and clustering thresholds improves the detection 
of smaller appliances, however this comes at the expense of 
increased computational costs and reducing the repeatability of 
closure rules for less frequent loads. 

loads = [] 

rules = gatherClosureRules() #See Section III 

simplifyClosureRules(rules) #See Section IV 

 

def createLoad(transitions): 

  load = len(loads) 

  for t in transitions: 

    if t.is_positive: t.loadcount = {load: +1} 

    else: t.loadcount = {load: -1} 

  loads.append(transitions) 

 

def findCoreLoads(rules): 

  for rule in rules: 

    if rule.length == 2 == countUnknowns(rule.transitions): 

      if rule == strongestRule(rule.transitions[0]): 

        if rule == strongestRule(rule.transitions[1]): 

          createLoad(rule.transitions) 

 

def solveRule(transitions): 

  unknown = getUnknownTransition(transitions) 

  knowns = getKnownTransitions(transitions) 

  unknown.loadcount = negative(dictSum(knowns)) 

 

def solveComboRules(rules): 

  for rule in rules: 

    if rule.length > 2: 

      singular = getSingularTransition(rule.transitions) 

      components = getComponentTransitions(rule.transitions) 

      if countUnknowns(singular, components) == 1: 

        solveRule(rule.transitions) 

Fig 3.  Python pseudocode for methods of mapping transitions to loads. 

  
Fig 2.  Power time series (left) transformed to a multidigraph (right).  In this diagram, steady state clusters are nodes denoted 

with letters and transition clusters are edges denoted by Ti.  Numbers in parentheses represent the counts profiles contained 

within the transition cluster, indicating multi-edges.  The vertical axis represents watts.  Colored edges represent loads. 



VII. INDIVIDUAL LOAD CONSISTENCY METRICS 

Load Closure Rule Weight (CRW) for a load is the weight of 
the core rule defining the load, and should be minimized to 
indicate that the cycles have been properly detected.  Users can 
assess the consistency of one disaggregated load with respect to 
another based on these values. 

Transition Imbalance (TI) describes the relative difference 
in the number of defined off and on transitions for a load.  If the 
count of offs and ons do not agree, then there are either false 
positive or false negative associations between the load and the 
transitions.  This term represents a minimum of the classification 
error.  TI is calculated as a percentage difference:  
|num_on – num_off| / (num_on + num_off). 

Loads isolated with closure rules are binary in that associated 
transitions turn the load on or off.  In some cases, continuously 
variable devices may be detectable when the base level on and 
off transitions form a closure rule.  Multistate loads as described 
by [1] are separated into their individual components (e.g. an air 
conditioner’s fan and compressor).  This approach does not 
assume or require that all loads are single count (i.e. that only 
one load with the defining transitions exists on each circuit).  
Banks of identical lights, roof top air conditioners, and 
computers in offices are examples of loads that may be 
multicount. A load will have one more state than its number of 
instances on a circuit. 

Single Count Error (SCE) is the fraction that a load 
sequentially changes state in the same direction to the total 
number of load transitions.  Single count loads should have a 
minimum of these types of errors.  Valid multicount loads will 
have a small imbalance between the counts of on-on (on 
transition followed by another on transition) and off-off events.  
SCE is computed as a percentage difference: |num_on_on – 
num_off_off| / (num_on_on + num_off_off). 

VIII. RESULTS 

Results are given in Table I and Table II for our case study 
using the BLUED dataset [16] (only phase A), with an event 
threshold of 2W/s across 3s and clustering fixed radius of 24 
watts.  The loads discovered are compared with the ground truth 
results published by [21-22].   

Table I shows some basic summary statistics for our results 
in working with BLUED.  In all, our process found five reliable 
loads, of which three of them we could confidently match to 
ground truth data referenced in [21-22].  In Table II, the Event 
Error column refers to the percent difference in the number of 
ground truth events and the number of events attributed to a load 
via our process.  For our three loads, the event error was less 
than 3%, indicating that our results are fairly reliable.  For the 
fridge load, we note that the event error was due to missing 
events which could be defroster events identified in a separate, 
less reliable load. 

In total, 38 of the 39 transition clusters were defined.  The 
%Solved Non-Trivial Transitions row of Table I is at 98.4%, 
leaving just a single transition cluster and its profiles as 
undefined due to a lack of frequency to warrant a satisfying 
closure rule.  When we consider the absolute transition power of 
these solved transitions, 94.2% of the power was solved, 

suggesting that the one unsolved transition was also a very high-
powered transition.  Given that very little energy is consumed 
by what we were unable to disaggregate, these results indicate 
very strong performance with detecting loads for BLUED. 

In Table II, we note that the 3% single count error associated 
with the fridge load (which amounts to 9 events that were 
improperly labeled) could have been due to the presence of a 
load with similar power.  With a visual observation of the raw 
data, we can indeed see that it would be easy to make the same 
mistake.  On the other hand, the chopper and compressor loads, 
which are very unique and infrequent loads, had zero errors. 

Mapping the transitions to steady state periods to fully 
disaggregate the energy consumption is beyond the scope of this 
paper.  However, optimization and pattern recognition methods 
have proved to be effective once load features have been inferred 
[23-25].  As future work, we are looking to improve upon such 
techniques while utilizing our graphical closure rule approach. 

TABLE I:    SUMMARY STATISTICS FOR BLUED PHASE A. 

#Non Trivial Events 904 

#Steady State Clusters 35 

#Transition Clusters 39 

#Unique STEC Edges 155 

#Unique Cycles 27 

#Loads 5 

%Solved Non-Trivial Transitions 98.4% 

%Solved Sum Abs Transition Power 94.2% 

TABLE II:    STATISTICS FOR TOP THREE COMPARABLE LOADS FROM 

BLUED PHASE A.  EVENT ERROR IS THE FRACTION OF ESTIMATED TO ACTUAL 

GROUND TRUTH NUMBER OF EVENTS. SCE, CRW AND TI ARE DEFINED IN 

SECTION VI. 

Load Event 

Error 
Single Count 

Error (SCE) 

Closure Rule 

Weight (CRW) 
Transition 

Imbalance (TI) 
Fridge 0.024 0.030 0.004 0.008 

Chopper 0.000 0.000 0.171 0.000 

Compressor 0.000 0.000 0.478 0.000 

IX. CONCLUSIONS 

We present an unsupervised method for NILM load isolation 
using graph theory cycle detection.  The approach extends the 
ability of matching ‘on’ transitions with ‘off’ transitions that are 
negatively related since transitions are linked through cycles 
involving multiple loads.  An elimination factorization reduces 
the transitions in the cycles to represent independent sets of 
loads.  Combination transitions are then identified and defined 
in terms of loads with stronger cycle weight.  Consistency 
metrics are proposed that yield a relative or absolute indication 
of the quality of fit without the existence of ground truth data.  
From our results, we show that this process can attain an 
accuracy with error rate less than 3% on the BLUED dataset 
when compared to ground truth. 
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