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"B"9&42C"!D&EEFGH!

The world of big data  and its promised opport unities could not have come soon enough. Utility 

planners have always needed, but never really had, detailed end-use data to help them 

understand how various customers contribute to the overall profile. Accurate and robust end-use 

data can benefit utility activities across the value chain. The information is invaluable for energy 

efficiency program design and evaluation, dema nd response planning and evaluation, load 

forecasting, integrated resource planning, generation resource acquisition, transmission and 

distribution planning, transformer load management, rates and regulatory policy, marketing, and 

customer service operations. 

The end-use data that is currently available is inadequate and incapable of capturing the 

customer-to-customer variation inherent in actual  end-use energy use. Modelled data provides a 

useful starting point; however, we believe that only metered data captures the true variability 

inherent in actual consumption.  

Capturing end-use data is complex, often intrusive, and expensive to collect. One challenge is to 

ensure that data are valid and robust while being cost-effectively collected. A well-designed and 

leveraged end-use metering strategy is the best vehicle for obtaining representative 

consumption patterns at an hourly level. It is also important to collect data over a significant 

time period. 

There are many ways to collect and develop data , from statistical disaggregation and modeling 

approaches to integrated sampli ng using conventional or advanced metering techniques. Each 

approach has its own set of pros and cons. DNV GL believes that the most effective strategy is to 

match the approach with the utilityÕs overall objectives, likely linking several strategies in an 

integrated framework. 

Given the complexity of this effort, any end-use business model must be extremely cost-efficient 

and supported by multiple users. It must also  take advantage of the hardware, software and 

methodology improvements that have been developed in the past 20 years. Adding validated 

energy consumption simulation models of every building in the sample would greatly enhance 

data transferability and usability. 

We believe that any national effort must start at the regional level in order to effectively capture 

the localized building characteristics and HVAC requirements in the region. The key is to start 

small by working a proof of concept with one or mo re utility partners in th e region or regions of 

interest. DNV GL is seeking interested partners to help the industry gain a better understanding 

of this most fundamental component, the customer . We are driven by our vision of an industry 

rich in meaningful data and insight on how and when consumers are using electricity. 
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End-use information refers to the energy and demand characteristics that separate the 

customersÕ total household or facility energy in to the various end-use components (Figure 1).  

As an industry, we are moving to a much more time-differentiated planning horizon where loads 

and costs vary hourly. The utility planner need s detailed end-use data to understand how the 

various components contribute to the overall profile. End-use data benefits numerous utility 

activities from forecasting and planning to program design and pricing. Despite the range of 

applications and potential benefits, data collection and dissemination has stagnated.   

This white paper explores the need for more-descriptive information and the strategies that 

could move us from an industry of have notÕs to an industry of haves . The challenge is to 

effectively combine the interval load data available through the automated metering 

infrastructure (AMI) with innovative data collection and analyses strategies to provide sufficient 

detail for effective business planning and decision making. This includes answering the question: 

How good is good enough? This paper suggests  a framework for cost-e ffective strategies for 

understanding in detail how the customer uses energy. 

 !
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End-use data benefits numerous utility activities, including program design and evaluation, load 

forecasting and management, rates and pricing, transmission and distribution planning, 

integrated resource planning, marketin g, and customer service operations. 

"#(7L;!"AA5M5(#M;!*#$!)(0*#$!G('/.#'(S! End-use load shape data can be used in several 

aspects of energy efficiency (EE) program design, monitoring and evaluation, including: 

�x Estimating hourly program impacts, by end-use, customer class and/or market segment 

�x Demand-side resource planning studies of benefits and costs, based on hourly impacts on 

the system load shape 

�x Program evaluation studies of realized impacts from programs up and running in the field 

�x Ex-post benefit/cost studies based on measured savings over season, monthly, daily and 

hourly load intervals 

End-use load data is a critical input in mana ging and estimating the impacts from demand 

response (DR) programs, most notably calculating peak hour/interval impacts 1. Accurate and up-

to-date interval load data, including data collected on equipment and appliances controlled by 

the program, are key to determining the Custom er Baseline Load (CBL ) that serves as the 

reference load profile for DR curtailment peri ods. Examples of this equipment include: 

�x Electric Water Heating 

�x Pool pumps 

�x AC Cycling  

�x Lighting systems controls (commercial buildings) 

�x Motors and drives (industrial loads on curtailment) 

P.*$!K.7(M*'+5#LS  A utility can use detailed end-use data to develop end-use load forecasts. !In 

turn, the utility can use these forecasts to assess the impacts of changes in customer load 

resulting from downstream changes in standards (e.g., continued improvements in the efficiency 

of HVAC equipment), increases in future progra m participation (e.g., increasing weatherization 

incentives result in accelerated participation) or technology change-outs (e.g., replacing 

conventional water heating with heat-pump water heating). The load forecaster can use the data 

to isolate and measure weather-driven change s in load, separated from other non-weather 

sensitive end uses/equipment categories.    

G*+('!*#$!Q75M5#LS! End-use load data is used for !rate and tariff design. Time-of-use (TOU) 

rates are typically designed based on hourly load profiles collected from representative samples 

of customers and/or end uses. For example, hourly household load shapes are a minimum 

requirement to design a TOU rate targeting elec tric heat or electric vehicles. Custom rates 

designed around specific energy-efficient technologi es (e.g. high efficiency electric heat pumps or 

                                               
 
1 Peak demand impacts are most-often measured in 15-minu te intervals, but can also be monitored at 5-minute 
time intervals within a 60-minute window.  
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electric vehicles) benefit from end-use-specific hourly load profiles, which allow the analyst to 

better understand the amount of ener gy consumed in specific periods. 

Such data is used to estimate the impacts of introducing TOU rates, as well as rate and tariff 

design derived from cost of service studies. Since many costs to serve electric load vary widely 

by time-of-use, end-use and class-level load data is often used in the allocation of costs to serve.  

Time-differentiated rates and tariffs are deri ved from this set of cost allocations. 

47*#'05''5.#!*#$!)5'+75@8+5.#!Q-*##5#LS  Interval load data is used to determine capital 

requirements and investments for a wide range of system-level investments. To size distribution 

feeders serving a small geographic location, a pla nner will need estimates of peak hourly loads, 

which are typically driven and/or correlated clos ely with major end-use loads (e.g. AC/Heating).  

The growth of conservation voltage reduction (C VR) load reduction measur es is adding to the 

need for interval load data at the substation/feeder level. Information about the end-use loading 

of appliances will help planners to size distribution transformers. 

G('.87M(!FMT85'5+5.#!*#$!2#+(L7*+($!G('.87M(!Q-*##5#LS! Most resource acquisition and 

integrated resource planning studies require modifications to the system load shape associated 

with one or several competing alternative resource  portfolios, each of which implies a different 

set of modifications to the hourly system profile.  This analytical activity  requires end-use level 

load data to properly execute.  

98'+.0(7!D(7,5M(!*#$!J/(7*+5.#'S   End-use data can produce important insights for use 

when dealing with customer inquiries.  Insights on how customers use energy can lead to 

programs of mutual benefit to both the utility and the customer helping to strengthen customer 

satisfication and overall customer relations.  The end-use insight can be invaluable when it 

comes to devloping customer messaging, e.g., when hot weather is about to hit, to help stem off 

customer inquiries before they begin. 

)JI34!O"!FPG"F)H!NFC"! "I)%&D"!2IKJGEF42JIR!

The answer to this question is Òkind of.Ó End-us e information is available in various forms such 

as appliance saturation surveys, laboratory ratings, and modelled energy consumption, which 

includes some limited metered data (e.g. load shapes). But this data is inadequate and incapable 

of capturing the customer-to-customer variation inherent in actual end-use energy use. While 

modelled data provides a useful starting point, we believe that only metered data captures the 

true variability i nherent in actual consumption.  

Depending on the segmentation strategy employed, actual consumption data can be highly 

variable; representing both the wide variation in connected loads found in various 

households/buildings as well as the unique manner  in which individual customers interact with 

those loads.  

As shown in Figure 2, the water heater energy consumption is considerably variable across the 

sample of 20 residences. In the figure the indi vidual customer loads are shown as dashed lines 

with the overall average displayed as a heavy, solid line.  Individual use ranges from 3 kWh/day 

to more than 20 kWh/day.   
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Many loads, such as residential refrigerators, are also quite predictable once a few basic 

parameters have been established. By definition, end-use metered data can capture the variation 

of consumption over a specified ti meframe, generally in annual te rms of 8,760 hourly intervals, 

fulfilling the expressed n eed for defining energy efficiency impacts on an interval by interval 

basis. The key challenge for any end-use data set is to capture both the high degree of variability 

and the predictable end-use components within an easy-to-use framework.  

"U5'+5#L!G('.87M('!JAA(7!*!D+*7+5#L!Q.5#+!!

With regard to the availability of end-use meteri ng data, EPRI has one of the most significant 

resources in the data acquired fo r the Center for End-Use Energy Da ta (CEED). Much of that data 

was derived from the End-use Load an d Consumer Assessment Program (ELCAP 2) and other 

sources (end-use data and modelling efforts from around the country). However, ELCAP data 

was collected in 1980s through the early 1990s, and included sites from Washington, Oregon, 

Idaho, and Western Montana. Of primary concern is that much of the data and energy utilization 

intensities of HVAC equipment and appliances have  changed dramatically ov er the last 20 years.  

Other large scale end-use metering efforts have included the Sierra Pacific Power CompanyÕs 

(SPPC) comprehensive Energy Information Projec t (EIP) conducted in the mid-1980s on single 

                                               
 
2 End-use Load and Consumer Assessment Program (ELCAP) is also known as the End-use Load and Conservation 
Assessment Program and the Regional End-use Monitoring Program or REMP.  

K5L87(!<!F,(7*L(!)*5-;!O*+(7!N(*+(7!&'(!
Source: Glasgow Electric Power Board 
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family and multi-family residential and selected 

commercial segments. PowerSouthÕs (formerly 

Alabama Electric Coop erative) residential-

marketing oriented end-use metering project 

from 2003 through 2005 examined residential 

water heating and a wide array of HVAC systems. 

Two other recent efforts include a commercial 

unitary HVAC study and a commercial lighting 

end-use data development project completed by 

the Northeast Energy Efficiency Partnership 

(NEEP).   

Most other recent end-use metering activities have been conducted as part of demand response 

or energy efficiency evaluation projects and tend to be projects with relatively small, localized 

samples focused on single end uses, e.g., a sample of 100 residential air conditioners included in 

the XCEL Energy SaversSwitch program evaluation . Examples of other sources include California 

data from the DEER database or the CEC-CEUS database. 

The overarching challenges are that most of these projects are narrowly focused in a single 

region, the data are not available outside the specif ic utility, or the collected data are simply too 

old to be of use.  

ONF4!2D!NJP)2IV!&D!6F9WR!

Capturing end-use data is complex, often intrusive,  and expensive to collect. It is important to 

ensure that data are valid and robust while be ing cost-effectively collected. As end-use data 

comes from a sub-set of the overall population, it is absolutely critical to employ robust 

statistical sampling techniques when designing and selecting the sample. This approach includes 

properly defining and adequately segmenting the population. The sample must be representative 

of the larger population, with minimal bias and measurable precision. For example, several large 

end-use metering efforts have e ffectively used nested sampling and leveraged end-use data with 

whole facility data, including SPPCÕs EIP and the PowerSouth projects.  

The samples must reflect the diversity of end-use loads and the building and usage variation 

found in the overall population. In addition, a useful end-use strategy should include the 

collection of a full range of associated popula tion characteristics, including a database of 

consumption and building/occupant characteristi cs in an easy-to-use analytical framework.  

Consumption for some end uses can be highly variable and dependent on individual consumer 

behavior, which poses a big challenge. Simply ha ving the end-use device is not necessarily a 

good predictor of the usage of that device. Furthermore, conn ected loads themselves can be 

highly variable. Prior studies have identified residential sites with large numbers of computers, 

professional size ceramic kilns and semi-commercial heated and fully lit greenhouses. In the 

SPPCÕs EIP, the project team monitored all major residential end uses, except lighting, that were 

thought to constitute at least 10% of the total annual use of the household only to find out that 

they had captured approximately 50% of the a nnual household consumption. This meant that 

the remaining use came from lights and other miscellaneous pl ug-in appliances.  

The key challenge for any end-use 
data set is to capture both the 
high degree of variability and the 
predictable end-use components 
within an easy-to-use framework. 
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Considering these challenges, the best vehicle 

for obtaining representative consumption 

patterns at an hourly level is well-designed and 

leveraged end-use metering. It is expensive and 

time-consuming to develop such a robust 

framework, but it is crit ical to ensure that the 

foundational data are accurate and the 

associated population characteristics are 

understood.  

A truly useful end-use data collection project re quires data collected over a significant time 

period, e.g., two to five years. The world is a dynamic place and no piece of equipment operates 

perfectly for extended time periods. Accordingly, a robust end-use business model requires a 

way to support data collection over time. That  model must support close to real time data 

verification, identification of problems, problem correction, maintenance, data archiving and user 

support. The best way to assure accuracy and representativeness is to verify every piece of data 

using robust yet cost-effective methods. 

A long-term end-use project requires a long-t erm sampling perspective. There are modelling 

applications like Nielson ratings and political po lling that have long-term perspectives. End-use 

projects rarely have this perspective. Longer term sampling strategies common to other fields 

should certainly be considered. 

A viable end-use business model requires the ability to transfer results into different climates and 

potentially different characteristic subsets like building size and end-use mix. This would mean 

that the business model would not only have the data, it would include key tools and techniques 

that would enable the transfer of data ac ross climates and pote ntially across time. 

ELCAP, perhaps the preeminent end-use meteri ng project ever conducted, was extremely 

expensive, costing over $30 million dollars (in 1990 values). Bonneville Power Administration 

(BPA) justified the cost based on a number of factors, but principally to prevent a recurrence of 

forecasting errors like the one that had cost th e region about $10 billion dollars in abandoned 

nuclear power plant construction bonds. The info rmation and insights gained from ELCAP have 

been used countless times over the past three de cades and, in some sense, could be considered 

priceless. 

A new end-use project would be expensive and it would be difficult to duplicate the ELCAP 

justification argument. Therefore, we need to as sume that any end-use business model must be 

extremely cost-efficient and supported by multiple  users. It must also take advantage of the 

hardware, software and methodology improvements that have been developed in the past 20 

years. Data transferability and us ability would be greatly enhanced with the addition of validated 

energy consumption simulation models of every building in the sample; however, this is no small 

undertaking. 

 !

It is absolutely critical to employ 
robust statistical sampling 
techniques when designing and 
selecting the sample. 
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E(+X.$'!A.7!9.--(M+5#L!*#$!)(,(-./5#L!"#$%8'(!)*+*!

D+*+5'+5M*-!F//7.*MX('S!! Statistical approaches, in particular conditional demand analysis, have 

been used for years to identify the end-use loads within more aggregate data. Typically, 

responses from a large market saturation surv ey (i.e., several thousand respondents) are 

coupled with billing data. Statistical regression techniques are built to estimate the monthly, 

seasonal, or annual usage of customers with various appliances. Wh ile there is limited 

experience with the application of conditional demand analysis to short-time integration power-

consumption data, it has the potential to provide additional end-use detail compared to 

traditional monthly billing data approaches. 

Q7.+.+;/(Y)J"<!"#L5#((75#L!D508-*+5.#!E.$(-5#LS! When reliable end-use load data are not 

available, an hourly building energy simulation approach may be used to create the loads.  

Popular computer tools capable of hourly building load simulations include DOE2 and its user-

friendly derivative (eQuest), EnergyPlus, TRNSYS, and BLAST.  Currently, DOE2 is the most 

popular tool and used throughout the world, but EnergyPlus is gaining rapidly. One clear 

advantage of the DOE2 modeling approach is the ability to quickly and easily update end-use 

estimates by utilizing different (or updated) weather files.   

DX.7+%+(70!"#(7L;!"AA5M5(#M;!E(+(75#LS! Several projects have directly metered individual 

energy efficiency measures, such as chillers, ductless heat pumps and water heaters. Typically, 

these projects use direct measurements on reason ably sized samples. A limitation to the typical 

evaluation approach is that the metering is commonly implemented for a relatively short period 

of time, (i.e., one week to seve ral months), and focuses on the energy efficiency measures in 

question, which may or may not be end uses of interest. There is a non-residential lighting 

project being conducted in the Northeast that is examining the veracity of the estimates made 

with short time periods, e.g., four weeks, with  longer measurement peri ods, e.g., one year.  

These types of studies will provide insight into the appropriate time period needed to catch the 

seasonal variability of end-use loads. 

Q7(YQ.'+!E(+(75#LS  Many projects have tried using pre/post metering to assess energy 

efficiency measure performance. The challenge is to get the meter installed sufficiently in 

advance of the equipment upgrade. There is always  pressure on the evaluation not to interfere 

with project implementation and many of the prescriptive program designs do not lend 

themselves to an adequate lead time. There is currently a non-residential variable speed drive 

evaluation project being completed in the Nort heast and a non-residential lighting controls 

project under consideration using pre/post metering. 

2#+(L7*+($!I('+($!D*0/-5#LS!! Hybrid approaches that link several strategies warrant careful 

consideration in any future end-use metered data collection effort.  Impr ovements in the Òsignal-

to-noiseÓ ratio are achieved at a greater increa sed cost and complexity. Figure 3 presents one 

possible construct.   
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In this construct, utility customer billing data provides the foundation. The second tier could be a 

large demographic survey that is conducted to better characterize and segment the general 

population. This step creates specific categori es for further development. For example, the 

residential market may be segmented by dwelling  type, e.g., single family, multi-family and 

manufactured homes. Other supporting information could be used to filter out low-income or 

financially-assisted consumers, energy efficiency or demand response program participants, etc.  

With AMI and the proliferation of smart meters, the third tier could become hourly (or 15-minute) 

whole-premise metering data. This would allow interval load profiling of the various segments 

and provide the foundation of a first order estimate 3 of some selected end-use loads.   

The fourth tier would be the development of building simulation models for selected segments 

supported by the collection of detailed on-site audit data. The building simulation models provide 

a way to simulate the end-use loads and to run a host of what if  scenarios (e.g., What if 

weatherization levels were increased?). Building simulation models may provide the best 

strategy for developing detailed estima tes of energy efficiency measures.   

The top tier is detailed end-use metering, which could be broadly defined to stand on its own  or 

more narrowly defined helping to calibrate one or mo re element of the building simulation model.   

Each of these analytical layers provide elements to meet our overall needs as we proceed up the 

pyramid and can be linked statistically through nested sampling so that the highest point of 

inference is the actual end-use metering data, which has the best signal-to-noise ratio (or 

precision of estimate). 
                                               
 
3 Simple subtraction algorithms could be used on segments of like customers with and without a particular end-use, 
e.g., central air conditioning.  Alte rnatively end-use profiles could be developed just from customers with a 
particular end-use by subtracting non-weather sensitive load profile from the weather sensitive profiles, i.e., a 
moderate spring/fall day from a hot summer day.  

K5L87(!Z!"#X*#M($!F#*-;+5M'!D+7*+(L;!

!
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9.#$5+5.#*-!)(0*#$!F#*-;'5'S! Conditional Demand Analysis (CDA) may be considered a 

hybrid approach wherein statistical measurement methods are applied to load data, informed by 

engineering relationship defining one or more end-uses. In some instances, CDA provides a low-

cost alternative to end-use load data metering through the disaggregation of system or class-

level load data into major end-use load profiles. 

CDA also provides a bridge or mechanism for leveraging end-use load data from secondary 

sources, which can be reconciled or (re-)calibrated to aggregate load profile data for the native 

system. Such techniques depend heavily on the ability of the model to accurately true-up 

secondary end-use data to load profiles for the target area(s). 4   

The principles underlying CDA are best represented by the following equation description: 

EQ1) 4.+*-!E(+(7($!"#(7L;!&'(! [98'+.0(7!\!2]!Q(75.$%+^ !! _!

�™!F--%`!a"#$!&'(!\!`b! [ Customer –I]!Q(75.$%+^     for each Customer-i 

Where - ` represents the set of energy-using end-uses, for customer  (or premise) Ð 5.   

The focus of CDA methods is the estimation of a mean parameter value, or estimate, for each 

(End Use Ð j), in the above, most often using a sample(s) of premise level data: 

EQ2) a"#$!&'(!\!`b!_! �. `!c! �Ã> `daF++75@8+(!>!.A!`b!ceec! �ÃI `daF++75@8+(!I!.A!`b!  

For households, end uses represent the stock of ap pliance holdings (e.g. refrigerators, freezers, 

dishwashers, clothes washing/drying), and energy systems distinguished by fuel types (e.g. 

HVAC and water heating). For commercial buildings and facilities, energy consumption by end-

use, is often measured by energy use intensity per square foot , or end use EUI (lighting, HVAC, 

water heating, refrigeration, cooking, computer us e, etc.), also distinguished by fuel type(s). 

In EQ2 above, this translates in to the number of parameters and attribute variables required to 

accurately define the energy ut ilization properties of each a"#$!&'(!\!`b . For example, lighting 

end use (=j), may only require one attr ibute variable (hours of use during time-t ), such that �Ã>!

in EQ2 above, !would define the mean value for av erage lighting wattage in-use by customer Ð i, 

over period Ð t . By contrast, EQ2 for an HVAC end-use technology, may require multiple 

attribute variables ( multiple js ), including weather conditions, building hours of operation, square 

footage, thermal proper ties and other attributes most of ten represented by more complex 

engineering relations defining heating/ventilation/air conditioning system loads. 

It is also worth noting that CDA methods and models can be structured and applied to metered 

usage data measured over almo st any time period, limited only by the requirement that time-t  

be represented in the same units (annual, mont hly, daily, hourly etc.), on both sides of EQ1. 

47*$5+5.#*-!E(+(75#LS! Traditional approaches involve installing a load recording device directly 

on the load(s) of interest. This form of data collection is very customer intrusive; it requires 

access to the customerÕs facility/home to install the monitoring devices on the appliance or 

                                               
 
4 Statistical theory and principles play a large role in CDA in both defining the modeling framework (ex ante) and 
assessing the statistical precision and validity of the results (ex post). 
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circuit. Cost of the traditional approach was high, which often limited the sample size; however, 

data quality and the signal-to-noise ratio 5 were also very high.   

F$,*#M($!E(+(75#LS  New metering technology may overcome traditional obstacles to 

residential end-use data collection. The Single Point End-use Energy Disaggregation (SPEED) and 

Non-Intrusive Load Monitoring (NILM) devices perm it the collection of a multitude of appliance 

end-use loads without the wiring nightmares of  past years. These hardware/software systems 

purport to allow for the collection of appliance-specific load data without entering customer 

premises and without installing metering devices on appliances. The analysis software seeks to 

recognize appliance signatures in the data. For example, an electric water heater with a 3,500 

Watt heating element would look significantly different than a 100 Watt light bulb. However, 

when appliances have relatively similar electric signatures the ability of the software to 

distinguish between 3,500 Watt water heater element and a 3,500 Watt stove burner is 

somewhat suspect. 

D8//.7+5#L!2#A.70*+5.#S  An end-use metering project needs to effectively leverage other 

supporting information, such as: 

�x Utility billing records 

�x System SCADA and delivery point load information 

�x Whole facility metering collected by the uti lity for pricing, load research or automated 

metering infrastructure 

�x Hourly weather data from the utilit y or NOAA Class A weather stations 

�x Appliance saturation surveys collected in the residential and non-residential markets 

�x Energy efficiency tracking system databases 

�x External data sources including Google Earth 

�x External purchased datasets, e.g., Epsilon, Harte Hanks, D&B, InfoUSA, CoStar, etc. 

�x Laboratory ratings and manufacturer specifications 

�x Modelled energy consumption through EIA and other organizations 

�x Modelled interval load data from th ird-party or consulting organizations 

As an example, whole facility metering info rmation coupled with utility billing data and 

information on the specific type of facility can be used to generate average load profiles for 

specific domains of interest. Portland General Electric has been developing market segment load 

shapes using statistical techniques for several years.  

                                               
 
5 In this context, the signal-to-noise ratioÓ refers to how well the end-use load is isolated from other household 
loads.  
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Figure 4 presents an example of the type of information generated by combining several sources 

of information. The figure presents four segmen ts, office, grocery, secondary schools and small 

retail. One year of hourly data  are presented in two forms. Fi rst, a vertical EnergyPrint is 

presented that shows time on the x-axis, day of  the year on the y-axis, and the magnitude of 

load is shown in a color gradient with low levels of load in the black-blue spectrum and high 

levels of load in the yellow-white spectrum. The data starts on October 1, 2007 and ends on 

September 30, 2008. The two-dimensional graph simply shows the hourly load profile in a 

condensed form. The secondary school segment show the winter holiday and summer shut 

downs.  The office, grocery and retail all show some summer sensitivity. These data can be 

coupled with weather data to further investigate the temperature-load relationships. In addition, 

base and variable load levels can be established.  Statistical analysis can yield first order 

estimates of air conditioning (or weather sensit ivity) and hours of operation. Idaho Power and 

Portland General Electric have thousands of non-re sidential accounts with interval load data that 

have been identified by market segment. 

 !
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We believe that any national effort must start at the regional level in order to effectively capture 

the localized building characteristics and HVAC requirements in the region. Of course, one or 

more simultaneous regional effort s are possible. Utilities in the Pacific Northwest, the Southwest, 

the Southeast and the Northeast have expressed inte rest. One possible strategy is to coordinate 

with regional organizations like the Pacific 

Northwest Regional Technical Forum, the 

Southeast Energy Efficiency Alliance (SEEA), 

the Midwest Energy Efficiency Alliance 

(MEEA), the Northeast Energy Efficiency 

Partnership (NEEP) 6, or the New York State 

Energy and Resource Development 

Authority (NYSERDA). The U.S. Department 

of Energy and the national labs are natural 

partners in any regional or national effort.   

The key is to start small by working the 

proof of concept with one or more  utility partners in the region or regions of interest. The proof 

of concept is structured to reveal the strength s and weaknesses of the various approaches and 

provide the foundational building blocks to suggest a larger, more focused project.  To that end, 

the project team has held discussions with seve ral potential partners and plans to announce an 

initiative to advance the industry. We are exci ted about the prospect of working with one or 

more innovative utilities to explore the right blend of data and analyses to help answer the 

questions: ÒHow accurate is accura te enough?Ó and, ÒAt what cost?Ó 

Our vision is of an industry rich in meaningful  data and insight on how and when consumers are 

using electricity. A current, national database would be invaluable in helping the industry 

enhance its strategic business planning and decision making processes. 

 

This white paper is the first in a series on end-use information including: 

�x Glasgow Electric Power Board Ð Grid Smart Appliance Project 

�x Electric Power Research Institute Ð Non-Intrusive Load Monitoring 

�x Applications in Conditional Demand Analysis 

 

 !

                                               
 
6 NEEP has launched several end-use data development pr ojects in the past three years including commercial 
lighting, commercial unitary HVAC, and commercial refrigeration.  

We believe that working with a utility 
with some existing data will reveal the 
strengths and weaknesses of the 
various approaches and provide the 
foundational building blocks to suggest 
a larger, more focused project. 
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Driven by our purpose of safeguarding life, property and the environment, DNV GL enables 

organizations to advance the safety and sustainability of their business. We provide classification 

and technical assurance along with software and independent expert advisory services to the 

maritime, oil and gas, and energy industries. We also provide certification services to customers 

across a wide range of industries. Operatin g in more than 100 countries, our 16,000 

professionals are dedicated to helping our customers make the world safer, smarter and greener. 
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WHAT LIES BELOW THE CURVE? 
WHAT OPTIONS ARE AVAILABLE TO RESEARCHERS LOOKING 

TO GAIN INSIGHTS ON HOUSEHOLD END-USE LOADS? 
"
Finally! The quality of load profile data from advanced metering infrastructure systems (AMI) is 
sufficient to provide reliable data for advanced utility analytics. #$%&"'()%"*+"%(,"-,.,)-/(,-" ')0%."%1"
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End-Use Load Shapes and aggregated Load Curve  
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Non-intrusive  
�6�R���Z�K�D�W�¶�V���Q�H�[�W�" Well, if you have some budget for hardware and resources to install equipment, and 
are willing to sacrifice a little accuracy to save significant dollars, maybe you should investigate non-
intrusive load monitoring (NILM). NILM technology comes to us in two flavors. The first are business 
to consumer products (B2C) that are designed to be installed and used by consumers looking to get a 
fuller understanding of their energy consumption. These technologies are designed not only to monitor 
end-use utilization but to act on inefficiencies via snazzy mobile apps. The mobile apps give the user 
the capability to control/modify specific end uses using remote control switches. At the other end of 
the spectrum, we have utility grade hardware and analytical software systems that are designed with 
the utility researcher in mind. These devices are designed to provide quality end use data at a 
reasonable cost.  
 
So how does it work? Fundamentally, both the B2C and utility-grade systems rely on high frequency 
load measurements at the premise level that identifies and records transitions in energy consumption. 
In turn, these transitions or edges are stored and transmitted back to a central processing system 
where the data is processed using proprietary algorithms that convert the collected data into 
individual load shape components. The level of accuracy is very reasonable with an expectation of 80% 
or better on major loads. Of course, the accuracy can vary and depends on knowledge on the type of 
loads present and their associated patterns. The output available from the various technologies 
depends on the vendors sophistication in the measurement device, the intricacy �R�I�� �D�� �J�L�Y�H�Q�� �Y�H�Q�G�R�U�V�¶��
�S�U�R�F�H�V�V�L�Q�J���D�O�J�R�U�L�W�K�P�V���D�Q�G���W�K�H���D�E�L�O�L�W�\���W�R���F�R�U�U�H�F�W�O�\���³�O�D�E�H�O�´���D���O�R�D�G��  
 
B2C technologies have an edge in labeling loads as most technologies allow the end user to train the 
system by turning loads on and off and labeling the loads directly once the loads are recognized by the 
system. �8�W�L�O�L�W�\�� �J�U�D�G�H�� �V�\�V�W�H�P�V�� �G�R�Q�¶�W�� �K�D�Y�H�� �W�K�L�V�� �O�X�[�X�U�\�� �E�X�W�� �V�R�P�H�� �D�U�H�� �X�V�L�Q�J�� �G�L�U�H�F�W�� �P�H�D�V�X�U�H�P�H�Q�W�� �Wo 
capture some loads, helping reduce the overall uncertainty. By definition, utility researchers use NILM 
�W�H�F�K�Q�R�O�R�J�\�� �E�H�F�D�X�V�H�� �W�K�H�\�� �G�R�Q�¶�W�� �Z�D�Q�W�� �W�R�� �J�R�� �L�Q�V�L�G�H�� �W�K�H�� �F�R�Q�V�X�P�H�U�¶�V�� �K�R�P�H, i.e., they want to be non-
intrusive. To compensate for this, utility-grade vendors give the researcher a high degree of flexibility 
in system configuration by providing initial reference load shape libraries that can be calibrated for a 
given region or household type.   
 
�,�Q�G�L�Y�L�G�X�D�O�� �H�T�X�L�S�P�H�Q�W�� �D�Q�G�� �L�Q�V�W�D�O�O�D�W�L�R�Q�� �F�R�V�W�� �I�R�U�� �D�� �%���&�� �G�H�Y�L�F�H�� �D�O�R�Q�J�� �Z�L�W�K�� �D�� �V�S�H�F�L�I�L�H�G�� �D�P�R�X�Q�W�� �R�I�� �³�F�O�R�X�G-
�E�D�V�H�G�´�� �G�D�W�D�� �V�W�R�U�D�J�H�� �D�Q�G�� �D�� �P�R�E�L�O�H�� �D�S�S�O�L�F�D�W�L�R�Q��are low compared to their direct measurement 
counterpart. The cost for the B2C deployment ranges from a one-time fee of $200 to $300, with 
additional monthly fees based on selected functionality. Utility-grade systems are a bit costlier, 
�U�X�Q�Q�L�Q�J���D�U�R�X�Q�G�����������������I�R�U���W�K�H���P�H�D�V�X�U�H�P�H�Q�W���G�H�Y�L�F�H���D�Q�G���D�G�G�L�W�L�R�Q�D�O���O�L�F�H�Q�V�L�Q�J���I�H�H�V���I�R�U���W�K�H���Y�H�Q�G�R�U�¶�V���G�D�W�D��
collection and analytical software. Installation costs are dependent on whether the device is installed 
at the customer panel or at the utility meter where the measurement device sits between the utility 
meter and the customer service panel. 
 
A new technology is emerging in the NILM category that uses harmonic signatures as the basis for 
identifying end uses. This technology is very promising, but unfortunately requires individual loads be 
turned on and off for the system to label specific loads, which makes the use of the technology 
somewhat more intrusive to use.   
 
Statistical Based Algorithms  
Statistical�±based load disaggregation has been with us for some time now. These algorithms range 
from simple subtraction strategies to more sophisticated conditional demand analysis (CDA). 
Historically, CDA used multivariate regression models with annual energy consumption and saturation 
survey data as inputs to generate reasonable annual energy shares for major end uses. More recently, 
the availability of high frequency AMI data and powerful machine-learning algorithms have opened the 
possibility that a similar approach can be applied to develop end use load shapes. The clear advantage 
is a lower investment in hardware with a higher investment in software. Clearly, the end-use profiles 
provide the researcher more robust information than simple energy shares developed from annual 
consumption. However, the jury is still out on how well these techniques can generate accurate end 
use load shapes�² albeit, there is some promise that using higher frequency premise level data (1-
minute versus 15-minute), will provide reasonably accurate results. 
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