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Spikes or Surges
Short-term increases in the electrical supply
voltage, or current or both, are called

‘spikes’ (also called ‘surges’)
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Spikes or Surges D

* They are inevitable.
* Why?

* Lightning strikes & Power outages
* Tripped circuit breakers & Short circuits

* Power transitions in other large equipment on the
same power line

* Malfunctions caused by the power company

* Electromagnetic pulses (EMP)
with electromagnetic energy distributed typically up to
the 100 kHz and 1 MHz frequency range.



Missing Data 1P

- Power-meter acquires data, but cannot be
transmitted.

* (If there is any other reason — add)
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Sparse coding - Training D
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Sparse Coding - Disaggregation D
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Dictionaries are already learnt in the training phase
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HANDLING SURGES



Gaussianity & Mean Squared Error
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Mean Squared
Error: Love It
or Leave It?

A new look at signal fidelity measures

About 99%

within 3 s.d. | /

About 68% within
1 s.d. of mean

About 95%
within 2 s.d.

Smooth cost function — easy to

optimize

Perfect to use when error is small /
probability of large error is negligible

But not for large outliers!



Line-fitting — with outliers D
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Outliers — Heavy Tailed Distribution D

- Heavy tails — probability of large values are not
small, e.g. Cauchy
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 Used for modelling outliers (Cauchy, Exponential,
etc.)



Robust Estimation 11{p,

 Huber function — have been
\ M) widely used for robust
estimation.

* But more recently absolute
deviations are being
minimized.
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Robust Dictionary Learning - NILM [P

* Change all the cost function from |12-norm to |1-
norm.

* During training —
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* During Disaggregation —
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A. Majumdar and R. K. Ward “Robust Dictionary Learning: Application to Signal
Disaggregation”, ICASSP 2016
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Modelling Missing Data 1P

* Prior techniques were based on interpolation
* Nearest neighbor
* Previous value
* Bicubic

* Interpolating leads to ‘errors’.

* Mathematically, a more optimal way would be to
simply model the missing values, i.e.

Y=ROX
X — actual data collected by meter
Y — data received

R — binary sampling mask



Training and Disaggregation D

* Blind Compressed Sensing (BCS) for training —
Yi:RiQXi:RiODiZi

BCS - minHY. RO D.Z.H2 +A|z]|

* Simple Compressed Sensing type for

Disaggregation -
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Handling Both D

* Training
min[[v,— & 0 Dz || + 4]z,

. . Missing Data Surges / Spikes
* Disaggregation

min Y—R@[D1|...|DN] +A
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Results D

REDD Dataset: Standard Protocol

ol e
- Robust DL Powerlet Proposed Robust Powerlet Proposed
_ 75.5 81.6 77.0 53.0  46.0 54.5
_ 66.7 79.0 69.1 56.3  49.2 58.0
_ 65.2 61.8 67.0 439 317 45.7
_ 63.7 58.5 65.9 60.1  50.9 61.6
685 79.1 70.2 60.2  54.5 62.0



Future Work D

- We proposed ‘deep sparse coding’
* Instead of learning a single level of dictionary, we learn
deeper representations.

* In future, we will combine the proposed work with
deep sparse coding.
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