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NILM
 NILM analyses the aggregate electricity usage data measured at the

power supply entrance of the electric load to acquire the appliance-
level specific consumption information via pattern recognition
techniques and machine learning methods.

Source:  G.W. Hart “Nonintrusive appliance load monitoring” (1992)
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NILM 

Origins from G.W. Hart “Nonintrusive appliance load monitoring” (1992)
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Introduction
 Load Modelling is the prerequisite for implementing NILM

 Finite state machine(FSM) is the most common 
adopted method

Source:  G.W. Hart “Nonintrusive appliance load monitoring” (1992)

 Supervised Modelling
(supervised parameter learning from a  complete set 

of labeled signature samples)

 Semi-supervised Modelling
(unsupervised parameter learning with the knowledge 

of the state set and topology of the model)

 Fully unsupervised Modelling
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Introduction
 Fully unsupervised appliance modelling 

Get complete state set, topological structure and model parameters of FSM

without any priori knowledge

 from the aggregate load data
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Framework Overview
 Fact and Assumption: repeated appliance behavior patterns

 Ideas: 

 Simple Cycle Event Sequence(SCES) pattern constructing FSM

Use the frequent pattern mining techniques to extract
appliance SCES-patterns and combine them

Figure drew by the power data

from the public dataset “Blued”

FSM Model Topology of a three-state hair drier
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 Five Steps： Detection of IsoES

Clustering and Labelling of load events 

Mining the SCES patterns

Grouping of the SCES patterns

FSM model topology generation and 

parameter estimation

the set of ΩIsoES

logical name of event

the set of ΩSCES

groups of SCES patterns

Framework Overview
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Proposed Methods
Step1: Detection of IsoES：

 Isolated load Event Sequence (IsoES)

 IsoES detection method

 Taking IsoES as event sequence record in ESDB
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Proposed Methods
Step2: Clustering and Labelling of load events(in ESDB)

Get a unique logical name for each event

 mean-shifting clustering method 

any clustering analysis method not requiring cluster number

 signature vectors representing event  e

< (e11,t11), (e12,t12), (e13,t13), (e14,t14), (e15,t15) >

< (6,t11), (1,t12), (3,t13), (2,t14), (5,t15) >

Unlabeled IsoES

Event-labeled IsoES
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Proposed Methods
Step3: Mining the SCES patterns

 Frequent Event Sequence (FES) patterns mining

 Class GSP (Generalized Sequential Pattern) algorithm 

 Filtering out the SCES patterns with the β-ZLSC constraint
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Step4: Grouping of the mined SCES patterns

Divide the acquired SCES patterns into different groups 
associated with different appliances

 Fact and Assumption:
the load events produced by different appliances are different

Event Correlation Rule

Proposed Methods
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Step5: FSM model topology generation and parameter estimation

Incremental Topology Generation and Parameter Estimation (ITGPE)
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Experiments

76 IsoESs
Aggregate load data

(24h, 1Hz)
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Conclusions
 A fully unsupervised appliance FSM modelling framework is proposed

and validated on real measured data

 The applicability of the existing NILM technologies is improved

 Moving towards the realization of the auto-setup NILM
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Future work
 Comprehensive testing and analysis on more measured data

 Improvement on the methods and algorithms used by different
modules of the framework

 Appliance Naming for the acquired FSM model
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