The Neural Energy Decoder

Energy Disaggregation by Combining Binary Subcomponents

Henning Lange
PhD Student
henningl@andrew.cmu.edu

Mario Berges
Associate Professor
marioberges@cmu.edu

Introduction: Disaggregation in two steps

1) Find recurring building blocks in the aggregate current waveforms

2) Combine inferred subcomponents into appliances

Step 1: Inferring additive subcomponents

- Fully unsupervised

Step 1: Data pre-processing

Preserving phase info by slicing current according to zero-crossings in voltage:

Matrix containing current $Y \subseteq \mathbb{R}^{T \times N}$:

Step 1: Identifying sub-components

- Fully unsupervised
- Binary Matrix Factorization: minimize ||XG Y||
 - $X \in \{0,1\}^{T \times C}$: temporal information
 - $G \in \mathbb{R}^{C \times N}$: shape of component waveform
 - Y ∈ ℝ ^{T x N}: matrix containing aggregate waveforms
- BMF is NP-complete problem

Step 1: One slice of X and G

- minimize ||XG Y||
- Let's consider the ith row of X and the ith column of G

What: Gi

When: X_i

Step1: Neural Binary Matrix Factorization

- Approximation using Neural Network
 - special topology
 - Autoencoder
 - Output: XG with X being binary
 - Learning: minimize ||XG Y|| given some input

Step1: Neural Binary Matrix Factorization

Step1: Neural Binary Matrix Factorization

Step1: Application to Phase B of BLUED

- BLUED: sampling frequency of 12kHz but resampled to 4.8kHz, i.e N=80
- 5 layer neural network created with keras*
 - 60 cycles fed into network at once in freq domain
 - layers: 4800 -> 2000 -> 1000 -> 100 -> 4800
- C = 100, i.e. 100 inferred subcomponents

Step1: Application to Phase B of BLUED

Component 63:

Laptop: *

AC-DC converter?

- Electronics
 - Computer
 - Laptop
 - ...

Step1: Application to Phase B of BLUED

Component 34:

Note: DVR and TV have a temporal correlation of 1

University

Step 1: Some components cannot be appliances

- A single appliance as a superposition of components

Step 2: Combining additive subcomponents

- supervised
- unsupervised

Step 2: Supervised Re-Aggregation

- Assuming knowledge Q ∈ {0,1} ^{T x A} containing ground truth of appliance
 - 2-state appliances: *on* or *off*
- Find mapping between X and Q
 - Logistic Regression, ...] -> [0, 1, ...]

Results: Logistic Regression

$$mde(p, \hat{p}) = \sum_{i,t} rac{|p_i(t) - \hat{p}_i(t)|}{p_i(t)}$$

Appliance	Active	Boolean F1	Logit F1	$\text{MDE}(\hat{p})$	MDE(p)
A/V LR	60%	0.89	0.98	0.04	0.009
Computer 1	27.3%	0.88	0.99	0.05	0.042
Desk Lamp	21.4%	0.84	0.95	0.06	0.013
DVR	20.7%	0.94	0.99	0.006	0.005
Socket LR	> 0.1%	0.96	0.92	0.09	0.089
Garage Door	0.4 %	0.49	0.89	0.07	0.063
Iron	0.1 %	0.74	0.92	0.12	0.115
Laptop 1	33.3%	0.75	0.92	0.34	0.272
LCD Monitor	16.2%	0.73	0.94	0.12	0.029
Monitor 2	17.3%	0.80	0.92	0.20	0.089
Printer	0.1%	0.45	0.70	0.05	0.045
Tall Desk Lamp	21.4%	0.84	0.95	0.06	0.008
TV Basement	20.7%	0.94	0.99	0.05	0.029
Random	30%	0	0	-	-
Overall				0.058	0.037

TABLE I

Results: Logistic Regression

$$mde(p, \hat{p}) = \sum_{i,t} rac{|p_i(t) - \hat{p}_i(t)|}{p_i(t)}$$

Active	Boolean F1	Logit F1	MDE(p̂)	MDE(p)
60%	0.89	0.98	0.04	0.009
27.3%	0.88	0.99	0.05	0.042
21.4%	0.84	0.95	0.06	0.013
20.7%	0.94	0.99	0.006	0.005
> 0.1%	0.96	0.92	0.09	0.089
0.4 %	0.49	0.89	0.07	0.063
0.1 %	0.74	0.92	0.12	0.115
33.3%	0.75	0.92	0.34	0.272
16.2%	0.73	0.94	0.12	0.029
17.3%	0.80	0.92	0.20	0.089
0.1%	0.45	0.70	0.05	0.045
21.4%	0.84	0.95	0.06	0.008
20.7%	0.94	0.99	0.05	0.029
30%	0	0	-	-
	60% 27.3% 21.4% 20.7% > 0.1% 0.4 % 0.1 % 33.3% 16.2% 17.3% 0.1% 21.4% 20.7%	60% 0.89 27.3% 0.88 21.4% 0.84 20.7% 0.94 > 0.1% 0.96 0.4% 0.49 0.1% 0.74 33.3% 0.75 16.2% 0.73 17.3% 0.80 0.1% 0.45 21.4% 0.84 20.7% 0.94	60% 0.89 0.98 27.3% 0.88 0.99 21.4% 0.84 0.95 20.7% 0.94 0.99 > 0.1% 0.96 0.92 0.4% 0.49 0.89 0.1% 0.74 0.92 33.3% 0.75 0.92 16.2% 0.73 0.94 17.3% 0.80 0.92 0.1% 0.45 0.70 21.4% 0.84 0.95 20.7% 0.94 0.99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Overall

TABLE I

0.058

Step 2: Unsupervised Re-Aggregation

- Waveform clustering by 'appliance type' conceivable
 - Electronics
 - Resistive loads, etc ..

Step 2: Best component for each appliance

- For each appliance, the component that resulted in highest F1 score

Appliance Active Lower Bound F1 Naïve F1

- Random baseline:
 - 0.3

A ==1:====	A -4:	I D 1 E1	M-9 E1				
Appliance	Active	Lower Bound F1	Naïve F1				
A/V LR	60%	0.85	0.85				
Computer 1	27.3%	0.67	0.74				
Desk Lamp	21.4%	0.70	0.70				
DVR	20.7%	0.85	0.85				
Socket LR	> 0.1%	0.0	0.0				
Garage Door	0.4 %	0.24	0.3				
Iron	0.1 %	0.09	0.30				
Laptop 1	33.3%	0.71	0.71				
LCD Monitor	16.2%	0.63	0.63				
Monitor 2	17.3%	0.67	0.70				
Printer	0.1%	0.07	0.07				
Tall Desk Lamp	21.4%	0.70	0.70				
TV Basement	20.7%	0.85	0.85				
TAPI F IV							

Step 2: Augmenting existing approaches

- Existing NILM systems can be improved using NED

- A hypothesis could ced:

Conclusion

- Supervised: a single cycle of current sufficient to infer activity of appliance with decent precision
- Unsupervised:
 - Cluster according to waveform type?
 - Combine components in an unsupervised way possible?
 - Augment existing approaches with waveform information?
 - Regularization, sparse coding?

e computationally very cheap, carried out by smart meter

ismission problems circumvented: 100 additional bits per cy University

Carnegie

Thank you!

- Special thanks to Jack Kelly and Jingkun Gao for the feedback in our Skype calls:)
- Code for image and sound disaggregation available at:
 - http://henning.inferlab.org/neural-bmf/
- BLUED dataset can be found here:
 - http://portoalegre.andrew.cmu.edu:88/BLUED/
- Interested in a dump of the inferred matrices X, G and ground truth Q?

Step 1: Factorial HMMs and BMF

- Inference in additive FHMMs can be represented as a BMF problem with some

temporal regularization

minimize ||XG - Y|| + f(X)

- f(X) temporal regularization
- makes states 'sticky'

Disentangling Images

Source images:

Grayscale superpositions of images:

Disentangling Images

Weights of the components inferred by Neural BMF:

Non-Smoothness

- Binary Units: Output of the network is nonsmooth
- Aggregate power trace is also non-smooth
 - Jumps or drops when appliance is turned on/off
- Stochastic Gradient Descent requires gradients to be defined
 - f(x) = 1 iff x > 0, 0 else: gradient either 0 or not defined
 (x=0)

approximation: Set gradient of binary lerivative of (1 - exp(-x))⁻¹

