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Introduction and motivation
Ô Appliance identification

Ô A sub-task of the NILM problem

Ô Sometimes a disjoint process

Ô An upper bound

Ô Raw signatures (current Ὥὲ and voltage ὺὲ )

Ô High resolution signals

Ô Plug-level measurements

Ô Plug-level appliance identification

Ô Smart outlets

Ô Aspects of the identification process

Ô Training data

Ô Sampling frequency

Ô Signature variations
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Task and tools

Generic appliance identification from high resolution raw measurements

Ô Neural network ensembles: 

Ô Suitable for raw-data learning

Ô Unstable w.r.t training data (i.e. suited for models ensembles)

Ô Plug Load Appliance Identification Dataset (PLAID) [1]

Ô Plug-level raw measurements

Ô Generic appliance categories
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[1] J. Gao, S. Giri, E. C. Kara, and M. BerǵesΣ άPLAID: A Public Dataset of High-resolution Electrical Appliance Measurements for Load Identification 
Research: Demo AbstractέΦ Lƴ ǇǊƻŎŜŜŘƛƴƎǎ ƻŦ ǘƘŜ 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings:198ς199, 2014.
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Ô Raw current Ὥὲ and voltage ὺὲ

Ô Unsupervised feature learning

Ô ● Ƕȟ○

Ô Single period ͯ πȢπρχseconds @ φπHz)

Ô Real-time identification

Ô ░ Ὥ†ȟὭ† ρȟȣȟὭ† Ὠ ρ

Ô Segment-based normalization

Ô Discarding amplitude information

Ô Generic labeling

Ô Ƕ
░ ░ ░ ȟ

░ ░

Ô Algorithmic expansion

Ô Multiple phase shifts from 2 periods

Ô Translation invariance and robustness to variations

Ô ת ● † † άȟπ ά

Appliance signature (green curves)

Expansion of training data
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Prediction model
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Ô A neural network ensemble

Ô Unstable models

Ô Similar to Bootstrap aggregation

Ô Ex. binary classification networks

Ô Ex. per class combination  υυnets

Ô Ex. shallow, feedforward, fully connected nets

Ὀ ȟ ●ᶰ●ת  ÏÒ● 

— ȟ ● Ƕὴ ȟ ȟ Ƕὴ ȟ

Ô Confidence-weighted voting
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An example of the adopted prediction model
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Experiments (1) - Prediction
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Ô PLAID Dataset

Ô +200 instances

Ô +1000 measurements

Ô Category-based ( 11 cat.)

Ô High frequency ( 30 kHz )

Ô Residential dataset ( 55 homes )

Ô Prediction - Training

Ô Validation-based early stopping

Ô Building-based validation

Ô Leave-house-out cross validation [2]

Ô Complete (54 houses, 30 kHz, 11 cat.)

Ô Prediction - Evaluation

Ô Category-based, Ὂ- score ὊρὛ

Ô Building-based, Accuracy 

Ô Total accuracy:  πȢψωϷ

[2] J. Gao, E. C. Kara, S. Giri, and M. Berǵes, άA feasibility study of automated plug-load identification from high frequency measurementsέ. 
In proceedings of the 3rd IEEE Global Conference on Signal and Information Processing (GlobalSIP):220ς224, Dec. 2015.

Three best/worst predicted categories

Introduction

Task & tools

Signatures

Model

Discussion

ııııııııııı

ııııııııııı

ııııııııııı

Label space

Signature
variations

Sampling
frequency

Prediction

Training data



14th May. 2016 

L. Mauch
Stuttgart
University 

Experiments (2) - Training data
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Ô Effect of reducing size of training data ►

Ô Building-based reduction

Ô Training on a ratio ὶof labeled data

Ô Sampling frequency Ὢ σπkHz

Ô Test sample: last period of each 
measurement

Ô Label space ɱ ρρcategories

Ô Notable degradation w.r.t training data

Labeled dataset ͯὶ Unlabeled set

Test
BuildingTraining dataValidation ͯ σπϷ
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