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Introduction and motivation
 Appliance identification

 A sub-task of the NILM problem

 Sometimes a disjoint process

 An upper bound

 Raw signatures (current 𝑖 𝑛 and voltage 𝑣 𝑛 )

 High resolution signals

 Plug-level measurements

 Plug-level appliance identification

 Smart outlets

 Aspects of the identification process

 Training data

 Sampling frequency

 Signature variations
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Task and tools

Generic appliance identification from high resolution raw measurements

 Neural network ensembles: 

 Suitable for raw-data learning

 Unstable w.r.t training data (i.e. suited for models ensembles)

 Plug Load Appliance Identification Dataset (PLAID) [1]

 Plug-level raw measurements

 Generic appliance categories
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[1] J. Gao, S. Giri, E. C. Kara, and M. Berg´es, “PLAID: A Public Dataset of High-resolution Electrical Appliance Measurements for Load Identification 
Research: Demo Abstract”. In proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings:198–199, 2014.
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Appliances’ Signature
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 Raw current 𝑖 𝑛 and voltage 𝑣 𝑛

 Unsupervised feature learning

 𝒙𝜏 = Ƹ𝒊𝜏
𝑇 , ෝ𝒗𝜏

𝑇 𝑇

 Single period (~ 0.017 seconds @ 60Hz)

 Real-time identification

 𝒊𝜏 = 𝑖 𝜏 , 𝑖 𝜏 + 1 , … , 𝑖 𝜏 + 𝑑 + 1 𝑇

 Segment-based normalization

 Discarding amplitude information

 Generic labeling

 Ƹ𝑖𝜏 =
2 𝒊𝜏− max 𝒊𝜏−min 𝒊𝜏 𝟏𝑑,1

max 𝒊𝜏−min 𝒊𝜏

 Algorithmic expansion

 Multiple phase shifts from 2 periods

 Translation invariance and robustness to variations

 𝒳 = 𝒙𝜏 𝜏 = 𝜏𝑜 +𝑚 𝜖 , 0 ≤ 𝑚 <
𝑑

𝜖

Appliance signature (green curves)

Expansion of training data
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Prediction model
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 A neural network ensemble

 Unstable models

 Similar to Bootstrap aggregation

 Ex. binary classification networks

 Ex. per class combination  11
2

= 55 nets

 Ex. shallow, feedforward, fully connected nets

𝐷𝜔𝑖,𝜔𝑗
= 𝒙 ∈ 𝒳 𝜔 𝒙 = 𝜔𝑖 or𝜔 𝒙 = 𝜔𝑗

𝜃𝜔𝑖,𝜔𝑗
𝒙 = Ƹ𝑝𝜔𝑖,𝜔𝑗

, Ƹ𝑝𝜔𝑗,𝜔𝑖

 Confidence-weighted voting

ෝ𝜔 𝒙 = arg max
𝜔𝑖 ∈ Ω



𝑗≠𝑖

Ƹ𝑝𝜔𝑗,𝜔𝑖
𝒙

Fully
connected

Weighted voting
(pre-assigned)

Sub
networks

1000

30

30

30

2

2

2

11

Generic
Labeling

Appliance
Signature

An example of the adopted prediction model
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Experiments (1) - Prediction
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 PLAID Dataset

 +200 instances

 +1000 measurements

 Category-based ( 11 cat.)

 High frequency ( 30 kHz )

 Residential dataset ( 55 homes )

 Prediction - Training

 Validation-based early stopping

 Building-based validation

 Leave-house-out cross validation [2]

 Complete (54 houses, 30 kHz, 11 cat.)

 Prediction - Evaluation

 Category-based, 𝐹1- score 𝐹1𝑆

 Building-based, Accuracy 𝛼

 Total accuracy: 𝛼 = 0.89%

[2] J. Gao, E. C. Kara, S. Giri, and M. Berg´es, “A feasibility study of automated plug-load identification from high frequency measurements”. 
In proceedings of the 3rd IEEE Global Conference on Signal and Information Processing (GlobalSIP):220–224, Dec. 2015.

Three best/worst predicted categories
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Experiments (2) - Training data
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 Effect of reducing size of training data 𝒓

 Building-based reduction

 Training on a ratio 𝑟 of labeled data

 Sampling frequency 𝑓𝑠 = 30 kHz

 Test sample: last period of each 
measurement

 Label space Ω = 11 categories

 Notable degradation w.r.t training data

Labeled dataset ~𝑟 Unlabeled set

Test
BuildingTraining dataValidation ~30%
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Experiments (3) - Sampling frequency
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 Complete training data (54 buildings)

 Resampled signals 

 Sampling frequency 𝑓𝑠 = 2.5 − 30 kHz

 Test sample: last period of each 
measurement

 Label space Ω = 11 categories

 Almost stable for a wide range

 Always +80%

FIR low pass
Filtering

Rate
Conversion

Fractional decimation

Introduction

Task & tools

Signatures

Model

Discussion

–––––––––––

–––––––––––

–––––––––––

Label space

Signature
variations

Sampling
frequency

Prediction

Training data



14th May. 2016 

L. Mauch
Stuttgart
University 

Experiments (4) - Signature variation
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 Complete training data (54 buildings)

 Sampling frequency 𝑓𝑠 = 30 kHz

 Test sample:

 Phase-shifted sample by 𝜏 seconds

 Label space Ω = 11 categories

 Robust to signature variations

 But only evaluated on 1 second of 
operation

 A certain phase shift is preferred

𝜏 = 100 𝑚𝑠
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Experiments (5) - Label space
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 Complete training data (54 buildings)

 Sampling frequency 𝑓𝑠 = 30 kHz

 Test sample: last period of each 
measurement

 Label space

 A list of appliances in each building is 
known

 A per-building label space Ωh

 Useful information but not always available.

 Total accuracy: 𝛼 ≅ 95%

𝜏 = 100 𝑚𝑠
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