NILM 2016 Lightning Talks



Technical Program Committee
Sean Barker, Bowdoin College

Md. Zulfiquar Ali Bhotto, Simon Fraser University
Nipun Batra, IIIT Delhi

Mario Berges, Carnegie Mellon University
Kyle Bradbury, Duke University
Hsueh-Hsien Chang, Jin-Wen University of Science and Technology
Bradley Ellert, Simon Fraser University
Jingkun Gao, Carnegie Mellon University
Manoj Gulati, IlIT Delhi

Sidhant Gupta, Microsoft Research

Zhenyu Guo, Sengled

Milan Jain, IlIT Delhi

Jack Kelly, Imperial College

Alex Leontitsis, British Gas Connected Home
Jing Liao, University of Strathclyde

Wenpeng Luan, China EPRI

Lucas Pereira, Madeira-ITI

Alex Rogers, University of Oxford

Karim Said Barsim, Universitat Stuttgart
Shima Shojae, University of British Columbia
Guoming Tang, University of Victoria

Akshay Uttama Nambi, TUDelft

Mingjun Zhong, University of Edinburgh



Running order

Occupancy-aided Energy Disaggregation

Analyzing 100 Billion Measurements: A NILM Architecture for Production Environments

An Accurate Method of Energy Use Prediction for Systems with Known Composition

Simple Event Detection and Disaggregation Approach for Residential Energy Estimation

Towards a Cost-Effective High-Frequency Energy Data Acquisition System for Electric Appliances
Unsupervised Learning Algorithm using multiple Electrical Low and High Frequency Features for the
task of Load Disaggregation

WHITED - A Worldwide Household and Industry Transient Energy Data Set

Event Detection in NILM using Cepstrum smoothing

A New Measurement System for High Frequency NILM with Controlled Aggregation Scenarios
Graphical Closure Rules for Unsupervised Load Classification in NILM Systems

An Improved Event Detection Algorithm for Non-Intrusive Load Monitoring System for Low
Frequency Smart Meters

SRS A

-~ © © xoXN



Occupancy-aided Energy Disaggregation

— to reduce computational complexity
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Energy Disaggregation

Guoming Tang and Kui Wu, University of Victoria, BC, Canada


http://www.csc.uvic.ca/~guoming/
http://webhome.cs.uvic.ca/~wkui/
http://www.csc.uvic.ca/~guoming/

Analyzing 100 Billion Measurements: A NILM Architecture for Production Environments
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An accurate method of energy use prediction MISSOURI
for systems with known composition S&T

Jacob A. Mueller and Jonathan W. Kimball, Missouri University of Science and Technology
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Simple Event Detection and Disaggregation Approach for O midori
| Residential Energy Estimation

+Signal acquisition using ned-meter, Flex-
plug & data from big utility suppliers in
Italy.

*An active window based NILM
approach for event detection and
feature extraction.

+Utilizes an unsupervised localized
events clustering and pairs matching

m

Devices activities

using automatic clustering methods (DE .

& GA)

eIdentifies active windows as single or
multiple devices operations and learns
power states observed.
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Awet A. Girmay, Christian Camarda

*Associate paired events to appliances based on
geometric spike features and usage patterns of loads.
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Towards a Cost-Effective High-Frequency Energy  mhomas kriechbaumer, anwar ui hag, @ = T

. University
Data ACqUISItlon System for EIeCtrIC AppllanCeS Matthias Kahl, and Hans-Arno Jacobsen of Munich
Enclosure
— Features
Cable USB Singllc;CBuard e Modular design

LAN

Data Center

Persistant Compression Post.
Storage Processing

Sensor Board
®  Power supply: 5V @ 1W
®  Currentsignals: 6 independent ACS712
e  Voltage signal: 6Vrms AC-AC transformer

Waveform reconstruction

Fully independent monitored power outlets
Configurable sampling frequency: up to 30 kHz
Cost-effective data acquisition: less than 100€

~— Custom DAQ
300 ~—— Oscilloscope

Sampler Board
Attached to Raspberry Pi via GPIO and USB
Independent 12-bit ADCs: MCP3201
Microcontroller : ATmega324PA
USB interface: FTDI232H
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Supported by:

Unsupervised Learning Algorithm using multiple #|&z:

Electrical Low and High Frequency Features

Electrical Features

a. Real and reactive power

b. Harmonics

c. EMI

real power [watt]

Unsupervised Learning

» Event-based & clustering
approach

* New projectin
industrial applications
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WH |TE D A Worldwide Household and Industry Transient Energy Data Set

Technical
University
of Munich

Matthias Kahl, Anwar Ul Hag, Thomas Kriechbaumer, Hans-Arno Jacobsen

MOtivation 01 Light Bulb 100W 01 Multi Tool 135W Data Set FaCts
* High resolution data 8o g 1 i ) . Sampling with 44.100Hz @ 16-Bit

£ 0 € 0 i\t 1 .
* Simple design o Lo “\' '” . 10 start-ups for each appliance
* Low cost components 01! - ol - ) . 1100 different records as flac files
* Crowd sourced initiative Timeins Time'is . 110 different appliances
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M eas u re m e nt Eq u i p me nt Audio Precision A-D FREQUENCY RESPONSE 10/18/06 18:06:40
For measuring the current, we use a < - 11 Ap| :5
. 3-port extension cord ) o 08
*  YHDC current clamp (30A/1V) g '
e AC-AC transformer (230V to 11V) s )
+  Voltage divider (11V to 0.47V) . o
*  CSLUSB sound card (CM6206 Chipset) .

Data Quality

. Spectral nonlinearity < 0.26dB at 3320Hz
. Sound card line-in SNR: ~76dB
e Current / power step size: 13.5mA /3.1 W

Drilling machine PT°35:" Mixer
Pro Work SMJ 500e owertec Kenwood CH580



Event Detection in NILM using Cepstrum smoothing

Leen De Baets, Joeri Ruyssinck, Dirk Deschrijver and Tom Dhaene, Ghent University

Cepstrum workflow:
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A New Measurement System for High Frequency NILM
with Controlled Aggregation Scenarios

Mohamed Nait Meziane, Thomas Picon et al., University of Orléans, France
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> Graphical Closure Rules for Unsupervised Load Classification in NILM Systems {
e Joseph Krall, Sohei Okamoto, Hampden Kuhns e

1)  Event Detection: steady states and transitions. Clustering: fixed-Radius, nearest neighbor.
2)  Graph: Steady States are vertices. Transitions are edges.

3)  Cycle detection: transitions in cycles become closure rules.

4)  1x1 rule/cycles (+x, -x) represent loads. Transitions are defined.

5)  Graph traversal from min-power steady state. Steady states are defined.
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<= Reno, NV, USA to its clients. For more information regarding LoadIQ, please visit www.loadig.com

P Loa d I Q 800 Haskell Street LoadlQ is a company based in Reno, NV, which provides energy monitoring solutions



An Improved Event Detection Algorithm for Non-Intrusive Load Monitoring

System for Low Frequency Smart Meters
Abdullah Al Imran, Minhaz Ahmed Syrus, and Hafiz Abdur Rahman
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Fig.: Edge offset Fig.: Five Steps of Transient edge detection Fig.: Transient edge as a differentiating parameter



