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How to model loads
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Non-Intrusive load monitoring as a single channel source 
separation problem

Separation
● Factorization/clustering  

methods
● Methods for denoising 
● Bayesian methods

Model 1

Model 2

Model K

Data acquisition
● Single channel
● Low frequency
● Real power only
● Hierarchical time 

dependencies
● Non-stationary

Input

Load 1

Load K

Main problem
● We need suited signal models to perform separation
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How to model loads
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State of the art Questions related to HMM

Recurrent Neural Network
● Very powerful model
● Can learn hierarchical time 

dependencies
● Hard to train
● Hard to interprete

Piecewise modelling
● Event based approaches
● Problem of segmentation
● Loss of information for variable loads
● Captures little information about 

time dependencies

Hidden Markov Model
● Simple model that can capture dependencies

between adjacent states
● Easy to train
● Good results if used with fHMM 
● No investigation yet how 

well they fit to load signals
● Good to interprete?

Goodness of fit
● Are HMMs suited to model all kind of 

loads?
● How can we interprete the HMM states?

Are they equal to the physical load states?
● How to choose the number of states?

Model adaptation
● Can we adapt HMMs to other houses?
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Hidden Markov Models
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Basics

Observation sequences and state sequences

Initial state and state transition probabilities

Emission probabilities
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Hidden Markov Models
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Basics
Joint sequence probability

Training and state inference

Baum-Welch algorithm

Viterbi algorithm



7

Hidden Markov Models
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HMM states vs load states
Transition of load states Transition of HMM states

● In general the load states and HMM states are different
● Their relationship depends on

● Type of the load
● Sampling frequency
● Transient phase of the load

● HMM states = load states if
● States with perfectly constant power consumption
● Sharp transient phase

Transient phase
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Hidden Markov Models

Lukas Mauch – 14.05.2016

Restricting the HMM parameters

Controlled vs uncontrolled

● For some controlled loads we can use prior knowledge to reduce the number of HMM parameters
→ better estimate of parameters

● Example: periodic chain structure leads to special transition matrix
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Model selection
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Akaike Information Criterion (AIC)

● Measure how well a model fits to a specific load
● Balances goodness of fit (data likelihood) against 

model complexity (number of parameters M)
● Choose model with lowest AIC

● If model does not fit 
● Increasing model complexity always leads to increasing data likelihood

M

A
IC

(M
)

best model

Model fits to the data

Model does not fit
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Model adaptation
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Basics

What are causes for differences between signals of loads of the same kind
● Differences in sampling frequency
● Differenent power consumption in each state
● Different state duration

Assumptions
● Periodic signal patterns
● Loads of the same kind share the same set of states

→ We can use a simple transformation of parameters to adapt the HMM
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Model adaptation

Lukas Mauch – 14.05.2016

Adaptation of the state mean

→ The means of each emission probability of all states are scaled independently

What are causes for differences between signals of loads of the same kind
● Differences in sampling frequency
● Differenent power consumption in each state
● Different state duration
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Model adaptation
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Adaptation of the transition matrix

What are causes for differences between signals of loads of the same kind
● Differences in sampling frequency
● Differenent power consumption in each state
● Different state duration
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Model adaptation
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Adaptation of the transition matrix

What are causes for differences between signals of loads of the same kind
● Differences in sampling frequency
● Differenent power consumption in each state
● Different state duration

Re-scaling the diagonal elements Re-scaling the off-diagonal elements
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Experiments
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AIC for different loads
Controlled multi-state load

Uncontrolled multi-state load

Variable load

Result
● Clear minima for controlled multi-state load 

using only few HMM states
● AIC keeps decreasing for increasing number 

of states (increasing model complexity) in 
case of uncontrolled multi-state and variable 
loads
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Experiments
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Adaptation to simulated data

Adaptation to measured data

● Simulated periodic load signal
● Train on 350 samples of house 1 (10 periods)
● Adapt on 35 samples of house 2 (1 period)
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Conclusion
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Is HMM a suited model for all loads?

Can we adapt HMM to different houses?

Outlook

● Good model for controlled multi-state loads with fixed periodic behaviour
● Bad model for uncontrolled multi-state and variable loads

● For periodic signals that share the same set of states between houses
→ parametric transformation of model parameters 

 can be used for adaptation
● Only little data for adaptation is needed

● For which loads can we reduce the model complexity by restricting
the model parameters?

● How do we have to modify the HMM assumptions to get good models
for variable and uncontrolled multi-state loads?
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