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Exploring The Value of Energy 
Disaggregation 

through actionable feedback
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Approach overview- How to give feedback
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Feedback methods on 
Fridge and HVAC

Both appliances commonly found across homes
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Evaluation overview
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Can we give such feedback?
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Do disaggregated traces provide features needed 
for providing feedback?

Disaggregated 
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Fridge is a duty cycle based appliance; 
compressor turns ON and OFF 

periodically 



Defrost cycles occurs periodically and 
consume high amount of power
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Fridge usage increases compressor ON 
durations (and reduce compressor OFF 

durations)
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Night hours typically have “baseline” usage
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Defrost energy
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Defrost energy
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Usage energy
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Experimental setup
Wiki Energy data set

1. 97 fridges
2. 58 HVAC



13 out of 95 homes can be given 
feedback based on usage energy saving 

upto 23% fridge energy



13 out of 95 homes can be given 
feedback based on usage energy saving 

upto 23% fridge energy

NILM algorithms show poor accuracy in identifying homes 
which can be given feedback based on usage energy



17 out of 95 homes can be given 
feedback on excess defrost saving upto 

25% fridge energy



Such feedback can’t be given with 
disaggregated traces, since these techniques 

fare poorly on defrost detection.



Benchmark NILM algorithms on our data set 
give accuracy comparable or better than 

state-of-the-art
Kolter 2012

Parson 2012
Parson 2014

Batra 2014
CO

FHMM
Hart

Error Energy %

0 17.5 35 52.5 70
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if NILM predicted this



But, we wanted to predict..
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It’s the details that we care about
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Like fridge, HVAC duty cycles to 
maintain the set temperature
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As temperature increases during the day, 
more energy required to cool the home
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People typically turn up the 
temperatures when they leave home
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Setpoint schedule score

Sleep

Sleep score = 1 if sleep temp. > 82, 
         (82-temp.)/4 if 78<sleep temp. <82
         0 otherwise



Learning HVAC setpoint
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Giving feedback 
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84% accuracy on giving feedback using 
submetered traces

39



NILM methods give 15-30% worse 
accuracy for feedback
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Benchmark NILM algorithms on our data set 
give accuracy comparable or better than 

state-of-the-art

Batra 2014

CO

FHMM

Hart

Error Energy %

0 7.5 15 22.5 30
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Morning hours which have lesser NILM 
accuracy are important for HVAC feedback



Conclusions
 

Appliance level data does enable 
actionable energy saving feedback

 



Conclusions
 

Appliance level data does enable 
actionable energy saving feedback

BUT 
Results show that we need to revisit the 
metrics by which we measures progress


