Exploring The Value of Energy Disaggregation through actionable feedback

Nipun Batra, Amarjeet Singh, Kamin Whitehouse 14 May 2016

Eco feedback

Eco feedback

Eco feedback

Actionable feedback

Fridge consumption over 24 hours

Eco feedback

Actionable feedback

Fridge consumption over 24 hours

Eco feedback

Actionable feedback

Fridge consumption over 24 hours

Eco feedback

Actionable feedback

Fridge consumption over 24 hours

Your fridge **defrosts too much**, wasting **30%** energy

Approach overview- How to give feedback

Specific features of trace to infer why energy usage is high

Approach overview- How to give feedback

Specific features of trace to infer why energy usage is high

Feedback methods on Fridge and HVAC

Others 38% HVAC 54%

Both appliances commonly found across homes

Evaluation overview

Submetered traces

Submeter sensor

Can we give such feedback? Submetered Disaggregated traces traces Smart meter 4000 Household 2000 aggregate ()Submeter NILM sensor 700 4000 ower (V) 700 350 2000 over (V) 350 0 () $\left(\right)$

Fridge is a duty cycle based appliance; compressor turns ON and OFF periodically

375

500

Defrost cycles occurs periodically and consume high amount of power

Defrost introduces heat increasing ON duration of next cycles

Fridge usage increases compressor ON durations (and reduce compressor OFF durations)

Night hours typically have "baseline" usage

Defrost energy

Defrost energy = Energy consumed in defrost state + Extra energy consumed in next few compressor cycles

Defrost energy

Defrost energy = Energy consumed in defrost state + Extra energy consumed in next few compressor cycles

Usage energy = Extra energy consumed over baseline

Experimental setup

Wiki Energy data set

97 fridges
58 HVAC

I3 out of 95 homes can be given feedback based on **usage energy** saving upto 23% fridge energy

NILM algorithms show poor accuracy in identifying homes which can be given feedback based on **usage energy**

17 out of 95 homes can be given feedback on **excess defrost** saving upto 25% fridge energy

Such feedback can't be given with disaggregated traces, since these techniques fare poorly on defrost detection. Benchmark NILM algorithms on our data set give accuracy comparable or better than state-of-the-art

"Average" error in energy would be low even if NILM predicted this

But, we wanted to predict..

It's the details that we care about

Like fridge, HVAC duty cycles to maintain the set temperature

As temperature increases during the day, more energy required to cool the home

People typically turn up the temperatures when they leave home

<u>EnergyStar.gov</u> recommended HVAC setpoint schedule

Setpoint schedule score

Giving feedback

84% accuracy on giving feedback using submetered traces

NILM methods give 15-30% worse accuracy for feedback

Benchmark NILM algorithms on our data set give accuracy comparable or better than state-of-the-art

Morning hours which have lesser NILM accuracy are important for HVAC feedback

Conclusions

Appliance level data **does** enable actionable energy saving feedback

Conclusions

Appliance level data **does** enable actionable energy saving feedback **BUT**

Results show that we need to **revisit the metrics** by which we **measures progress**