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Creating a detailed energy 
breakdown from just the monthly 

electricity bill 



Monthly electricity bill
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Obtaining energy breakdown

Sensor per appliance
Smart meter based  
energy disaggregation



Intuition

Home A Home B Home C

Jan Feb Dec Jan Feb Dec Jan Feb Dec



Approach overview
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Features

Derived 

Area, 
#occupants, 

#rooms, 

Aggregate home 
energy in Jan, 

Feb,..December

Variance, range, 
percentiles, ratio 

min to max., 
skew, kurtosis



Step 1: Feature selection

Feature selection 
algorithm

#rooms, aggregate energy trend, range

Derived 

Area, #occupants, 
#rooms, 

Aggregate home 
energy in Jan, 

Feb,..December

Variance, range, 
percentiles, ratio 

min to max., skew..

20 kWh 40 kWh 30 kWh



Step 1I: Matching

Feature 
1

Feature 
2

Overall Rank
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Step III: Prediction

Top-k Neighbours
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Evaluation- Dataset

HVAC Fridge Lighting Dryer Dish 
washer

Washing 
machine

31 21 12 32 26 16

Dataset Region #Homes Dataset 
duration

Data port Austin, TX 57 12 months



Evaluation- Baseline

Factorial Hidden Markov Model (FHMM) [AISTATS 2012]

Latent bayesian melding (LBM) [NIPS 2015]



Evaluation- Metric

Absolute error = |Predicted energy - Actual Energy|

Normalised Absolute error = Absolute error/Actual Energy

Normalised percentage error = Normalised absolute error X 100

Percentage accuracy = 100 - Normalised percentage error



Evaluation- Experimental setup

Cross-validation 
Optimising 

#neighbours and 
feature selection

Feature ranking

Leave one out Nested cross 
validation Random Forest

# HMM states # appliances in 
model Training on Temporal 

resolution

3 6 Entire data 15 min



Result



Result-II



Result-scalability



Predicting for different region



Transformation strategies

HVAC energy in 
R1

X # Degree days in R2
# Degree days in R1

HVAC energy in 
R2

Appliance (A) 
energy in R1 X Mean proportion of A in R2

Mean proportion of A in R1
Appliance (A) 
energy in R2

200 kWh 250 kWh

10 kWh 15 kWh



Result cross region training

Fridge HVAC Washing
machine
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Limitations & Ongoing work

1. Finding anomalous test homes  
2. Adapting to people change behaviour



Conclusions

1. Gemello- scalable and accurate energy 
breakdown

2. Transformation- scale across regions
3. Potential to be rolled off as a service today


