
An Experimental Comparison of Performance
Metrics for Event Detection Algorithms in NILM

Lucas Pereira
M-ITI / LARSYS and

Prsma.com
Funchal, Portugal

lucas.pereira@m-iti.org

Nuno Nunes
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Abstract—In this work, we analyze experimentally the be-
haviour of 23 performance metrics when applied to event de-
tection algorithms in Non-Intrusive Load Monitoring, identifying
relationships and clusters between the measures. Our results indi-
cate that when applied to this type of problems, the performance
metrics will evidence some considerable differences in behavior
when compared to other more traditional machine learning
problems. Our results also suggest that most of the differences
in behavior are due to the naturally unbalanced nature of the
event detection problem in which the number positive cases (True
Positives and True Negatives) is much higher than the number
of false cases (False Positives and False Negatives).

I. INTRODUCTION

One of the most interesting challenges of NILM research
(besides the disaggregation in itself) is how to evaluate and
report the performance of the several proposed approaches, in
part due to the lack of a consensus regarding which perfor-
mance metrics to use in each situation [1], [2]. For example,
only recently there seems to be an agreement upon grouping
performance metrics according to two main categories: i)
event detection performance metrics (ED) designed to evaluate
the NILM’s ability to track the consumption over time; and
ii) energy estimation metrics (EE), designed to characterize
and evaluate the NILM disaggregated data against the actual
ground-truth [3].

In this paper we extend the work from [4], in which the
authors experimentally analyzed the behaviour of 18 perfor-
mance metrics when applied to classification algorithms and
found that, on the contrary to what one would initially expect,
some metrics evidenced very high pairwise correlations.

Here instead, we focus on event detection algorithms. More
concretely, we analyze the behavior of 23 event detection
performance metrics when applied to evaluate five algorithms
across four datasets. To this end, we first train and test
five different algorithms across the different datasets by con-
ducting a controlled parameter sweep on selected algorithm
parameters. Then, for each model returned by the parameter
sweep we compute the performance metric values. Once all
the performance metrics are calculated we investigate the
existence of correlations between the results obtained for each
metric. More particularly, we study the existence of linear
(Pearson) and non-linear (Spearman) pairwise correlations.
Finally, after an initial correlation analysis, we further explore

TABLE I
EVENT DETECTION ALGORITHMS UNDER EVALUATION

Algorithm Symbol
Expert Heuristic Detector [6] EHD
Log Likelihood Ratio Detector with Voting [7] LLRV ote

Log Likelihood Ratio Detector with Maxima LLRMax

Log Likelihood Detector with Maxima [8] LLDMax

Log Likelihood Detector with Voting LLDV ote

the metrics correlation by means of hierarchical clustering and
dendrograms.

The remaining of this paper is organized as follows: First we
present and describe the algorithms, datasets and performance
metrics that will serve as the base for this work. After this, we
thoroughly describe our experimental design. We then move to
the results and discussion. Finally we conclude this paper by
presenting its research implications, limitations and providing
an outline of future work.

II. ALGORITHMS, DATASETS AND METRICS

A. Algorithms

According to the literature in event detection for NILM, the
different approaches are grouped in three categories: i) expert
heuristics; ii) probabilistic models; and iii) matched filters [5].

In this work we use five different algorithms for which
the implementation details are available in the literature: one
expert heuristic and four probabilistic detectors, which are
summarized in table I. For additional details please refer to
the respective publications.

B. Datasets

At the time of this writing, the only dataset with labeled
power events is BLUED [9]. Consequently, in order to proceed
with this work, we had to manually label some of the already
existing datasets. More precisely, we manually identified all
the transitions with an absolute power change of at least 30
Watts, for one week of data from house 1 and house 2 of the
UK-DALE dataset [10].

Table II summarizes the four datasets used in this ex-
periment, where P.E. is the number of power events in the
dataset, Power Change (W) is a summary of distribution of
the power events in terms of mean, and the 25%, 50% and



75% percentiles, and Elapsed Time (S) is a summary of the
difference in time between the power events in the same terms
as the Power Change column.

C. Performance Metrics

In this work we look at confusion matrix based metrics,
Area Under Curve metrics, and domain specific metrics (i.e.,
performance metrics that where specifically created for event
detection problems [5]).

1) Confusion matrix based metrics: As the name suggests,
confusion matrix based metrics are derived from the values in
the confusion matrix. In this work we selected 13 metrics: Ac-
curacy (A), Error-rate (E), Precision (P ), Recall (R), F0.5, F1,
F2, Standardized Mathews Correlation Coefficient (SMCC)
[11], False Positive Rate (FPR), True Positive Percentage
(TPP ), False Positive Percentage (FPP ), Precision-Recall
Distance to Perfect Score (DPSPR), TPR-FPR Distance to
Perfect Score (DPSRate), and TPP-FPP Distance to Perfect
Score (DPSPerc).

2) Area Under Curve metrics: The Area Under the Re-
ceiver Operating Characteristic curve (ROC−AUC) is com-
monly used as a summary of two performance metrics (R and
FPR), and is traditionally calculated using the trapezoidal
rule when evaluating scoring algorithms. However, since event
detection is a discrete problem, the AUC should not be mea-
sured by employing that rule given that the possible presence
of outliers could lead to distorted results [12]. Instead, the non-
parametric Wilcoxon statistic is used, as suggested by Hanley
and Mcneil [11]. In this work, we selected four variations
of the ROC − AUC, namely, the Wilcoxon based ROC-
AUC (WAUC), the Wilcoxon based ROC-AUC Balanced
(WAUCB), the Geometric Mean AUC (GAUC), and the
Biased AUC (BAUC). A more detailed explanation of each
metric can be found in [11].

3) Domain specific metrics: Domain specific metrics for
event detection were first introduced in [5] motivated by the
fact that metrics based solely on the confusion matrix im-
plicitly assume that all power events are of equal importance.
Here, we look at six DSMs, namely, the Total Power Change
due to False Positives (TPCFP ), the Total Power Change due
to False Negatives (TPCFN ), the Average Power Change due
to False Positives (APCFP ), the Average Power Change due
to False Negatives (APCFN ), the TPC Distance to Perfect
Score (DPSTPC), and the APC Distance to Perfect Score
(DPSAPC).

III. METHOD

A. Training and Testing

In order to gain deeper insights on the nature and structure
of the data that is generated by the event detection algorithms
we first perform a parameter sweep on the selected algorithms.

In this particular case we decided to set the power threshold
(Pthr) to 30 Watts, since this is the minimum power change for
which there are labeled events in any of the four datasets. Also,
we used the real power signal, since it is probably the most
widely used power measurement in event detection literature.

Ultimately, in this work we train and test 47950 distinct
event detection models. Each model is executed against the
four datasets for a total of 109800 model-dataset pairs.

B. Metrics Calculation

In this step we compute the performance metrics for each
of the models returned by the parameter sweep. To do this,
we first count the number true positives (TP ), false positives
(FP ), true negatives (TN ) and false negatives (FN ) for each
model. This is done by comparing the events triggered by each
model with the true events in the corresponding dataset (i.e.,
the ground-truth). To accomplish this, we define a tolerance
interval in which the detected events must fall in order to
be considered correct detections. The detection interval is
defined by equation 1 and is based on the ground-truth position
(GT), and tolerance (Tol) value that was added to account
for eventual ambiguity when defining exactly where an event
occurs during the labeling process. This parameter was set to
range between zero and three seconds with variable steps, as
defined by the set τ in equation 2, where Fs is the sampling
rate of the dataset.

Ω = [GT − Tol,GT + Tol] (1)

τ = {0, 1, 5, 15, Fs, 1.5× Fs, 2× Fs, 2.5×s, 3× Fs} (2)

Regarding the process of creating the confusion matrix, we
developed an custom algorithm that given a list of detected
events and another with the ground-truth data, works as
follows:

For each ground-truth event, if there are detections that fall
within the interval Ω given by equation 1, the event that is
closer to the ground-truth position (in absolute distance) or
the one that was detected first (in the case of equidistant
detections) is considered a TP , whereas the others must be
compared with the next ground-truth event. Otherwise, if no
events are detected within the specified interval, a FN is
added. Next, the detected events that do not fall within any
of the possible intervals Ω (one per each ground-truth event)
are considered FP . Lastly, when all the detected and ground-
truth events have been processed, the TN are calculated by
subtracting the TP , FN and FP from the number of samples
in the dataset, i.e., all the positions where an event could have
happened.

C. Pairwise Correlations

In this step we compute the linear (Pearson) and rank
(Spearman) pairwise correlations between the performance
metrics. The former indicates the existence and direction
of any linear relationships, whereas the later assesses the
existence of monotonic relationships (results tend to change
together but not necessarily at a linear rate).

In this particular case there are 27 metrics (including the
TP , FP , TN and FN ), for a total of (27 × 26)/2 = 351
unique pairwise correlations per coefficient.

Each model is evaluated 10 times in each of the four
datasets, for a total of 200 correlation matrices per coefficient



TABLE II
SUMMARY OF THE ACTIVE POWER CHANGE AND ELAPSED TIME BETWEEN POWER EVENTS IN THE EVENT DETECTION DATASETS

Dataset P.E. Power Change (W) Elapsed Time (S)
Mean 25% 50% 75% Mean 25% 50% 75%

UK-DALE H1 5440 268 48 100 273 111 4 7 28
UK-DALE H2 2842 365 45 74 137 212 6 15 172
BLUED PA 887 274 84 116 582 690 18 294 892
BLUED PB 1562 351 40 170 428 383 7 35 83

(10 tolerance values × 5 algorithms × 4 datasets). From these
matrices we compute a cross-dataset correlation matrix for
each coefficient by averaging the correlations matrices of each
dataset.

D. Hierarchical Clustering

In this step we build clusters from the resulting cross-dataset
correlation matrices using hierarchical clustering. To do so we
first define the dissimilarity and linkage functions.

Regarding the former, we use the dissimilarity function that
is defined in equation 3, where D is the distance and |C| is
the absolute value of the correlation between metric pairs.

D = 1− |C| (3)

As for the latter, we use the average-group distance, whose
distance between groups A and B is given by equation 4,
where d is a distance function (in our case the Euclidean
distance) and |A| and |B| are the size of groups A and B,
respectively.

DAB =
1

|A||B|
×

∑
a∈A

∑
b∈B

d(a, b) (4)

IV. RESULTS AND DISCUSSION

Figure 1 shows the average rank and linear correlations of
each metric across the four datasets. Metrics with average cor-
relations above 0.5 are highlighted with a yellow background.

When examining the correlation results shown in figure 1, a
first interesting observation is that the Average Power Change
(APC) metrics do not correlate well with any of the other
metrics. Furthermore, if we recall that APCFP and APCFN

are just the TPCFP and TPCFN metrics normalized by the
number of events it is possible to conclude that APC metrics
will evidence strong variations depending on the number and
amplite of the power events. For example, if event detector
A fails to detect (FN ) all the power events bellow 50 Watts
but only fails to detect one event of 100 Watts, it will still
have an APCFN of about 50 Watts. On the other hand, an
event detector B that only misses one event with 100 Watts
will have an APCFN of 100 Watts. Hence, according to this
metric algorithm A is considered better than B despite the fact
that is misses more events.

Another general observation concerns to the relatively
strong correlation (>0.5 in absolute value) between most of the
other metrics in figure 1. The only exceptions to this trend are
F1, F2, DPSPR and SMCC than have an average correlation

of only 0.46. This is particularly interesting since three out of
the four metrics were designed to balance Precision and Recall
(F1, F2 and DPSPR), and still they do not correlate well with
their “parent” metrics. For example, the F2 metric does not
have any pairwise correlation above 0.65, and perhaps even
more surprising, it does not correlate at all (<0.5) with either
P or R.

Figure 2 shows the dendrograms obtained from the non-
linear and linear pairwise correlations. A first general obser-
vation is the fact that linear and rank correlations return very
similar clusters. In fact, the only difference is the absence of
DPS metrics in the linear correlation clusters, which is not
necessarily surprising if we recall the quadratic nature of such
metrics.

The dendrograms also reveals a very high correlation be-
tween the AUC metrics and R (0.99). However, this is just a
reflection of the fact that the Specificity (or True Negative
Rate - TNR -) is always close to 1 since the number of TN
is much higher than the number of FP . Consequently, the
AUC metrics are only reflecting variations on R. Moreover,
it is possible to observe that the DPSRate metric is also very
well correlated with the AUC metrics in both coefficients. In
this case this is a reflection of the fact that the FPR is always
close to 0, meaning that this metrics is also fully controlled
by R.

A more specific observation concerns to the very strong
(0.92) pairwise rank and linear correlations between TPCFN

and R. A possible explanation for this is that most missed
power events (FN ) have a similar power change value (pos-
sibly near to the minimum power threshold), hence the strong
linear and non-linear correlations. Similarly, if we consider
the TPCFP , it is possible to observe some relatively strong
correlation (0.63) in the non-linear coefficient that is not fol-
lowed by a strong linear correlation. Hence, it is expected that
some TPCFP ranks will be relatively close to those obtained
with the other metrics, in particular those that are derived
from the FP . Still, the lack of a strong linear correlation is
a good indicator that the amount of power change of the FP
are heavily dependent on the dataset characteristics and not so
much on the algorithm configuration.

V. CONCLUSION

In this paper, study the relationship between 23 performance
metrics when they are used to assess the performance of
event detection algorithms. Overall, the major implications of
this work are twofold: i) uncovering important behaviors of
the performance metrics when applied to the event detection



Fig. 1. Rank and linear correlations averaged by metric for the four event detection datasets.
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Fig. 2. Dendrograms showing rank (left) and linear (right) correlations of the performance metrics across datasets.

problem, and ii) highlighting niches for which additional
metrics should be studied and new ones created.

For example, regarding the former, this work shows that the
extremely unbalanced nature of the problem (towards TN )
has several implications in the behavior of the performance
metrics. As for the latter, this work also highlights the potential
of DSMs to unveil important characteristics of the underlying
algorithms and datasets (e.g., TPCFN and TPCFP ). This can
be helpful when choosing the most adequate metric or set of
metrics to meet a specific goal.
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