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Abstract—Factorial Hidden Markov Models (FHMM) have
emerged as a prominent modeling approach for energy disag-
gregation. However, because latent variables become dependent
conditioned on the observation, reasoning about the posterior
is usually intractable which is required for inference as well as
learning. Recent approaches try to deal with these intractable
posterior distributions by applying Variational Inference with an
auxiliary distribution that assumes independence between latent
states of the posterior. However, because posterior distributions
in the context of energy disaggregation are often multi-modal,
independent auxiliary distributions fail to capture either-or rela-
tionships between appliance states. In this paper, we introduce an
auxiliary distribution over posterior states that, in principle, can
approximate any multivariate Bernoulli distribution arbitrarily
well, while at the same time offering a functional form that allows
obtaining independent samples as well as the mode required for
inference in O(N) where N is the number of parallel Hidden
Markov chains. On top of that, training the distribution requires
solely samples of the joint distribution which are typically easy
to acquire. We conduct experiments in the context of waveform
disaggregation illustrating the superior capacity of the proposed
distribution in comparison to independent auxiliary distributions
trained on minimizing the forward or backward KL-divergence.

I. INTRODUCTION

Factorial Hidden Markov Model [1] (FHMM) are a natural
choice for modeling the generative process of energy disaggre-
gation [2], [3], [4], [5]. FHMM are a generalization of Hidden
Markov Models were multiple hidden chains evolve indepen-
dently in parallel. Usually, the state of a single appliance is
modeled by a single HMM chain, whereas the aggregate power
measured at the main distribution panel is modeled by the
aggregate observation. Let z ∈ Z = {0, 1}N×T be the latent
variable and x ∈ RS×T be the aggregate observation with T
number of time steps, N number of parallel HMM chains and
S being the observation dimensionality. The joint distribution
is defined as:

p(x1:T , z1:T ) =

T∏
t

p(xt|zt)
N∏
i

p(zt,i|zt−1,i)p(z0,i)

However, reasoning about the posterior of P is usually difficult
because the latent variables become conditionally dependent

Fig. 1. a) latent variables of the proposed distribution are marginally inde-
pendent, however, become b) conditionally dependent given the observation

given the observation, specifically for the forward and filtering
distribution hold respectively:

p(x1:t, zt) = p(xt|zt)
∑
z′∈Z

p(zt|z′)p(zt−1, x1:t−1) (1)

p(zt|x1:t) =
p(x1:t, zt)∑
z′∈Z p(x1:t, z

′)
(2)

Note that (1) and (2) both contain summations over Z and
that the cardinality of Z grows exponentially with N .
Throughout this paper, for illustration, we will consider a

slightly simpler distribution that nevertheless faces the same
difficulty but for which exact solutions can be obtained and
visualized for small N . Consider the graphical model that
arises from removing the temporal dependencies between la-
tent variables (Figure 1a). Similar to FHMMs, latent variables
become dependent conditioned on the observation x (Figure
1b). For the density holds:

p(x1:T , z1:T ) =

T∏
t

p(xt, zt) (3)

As for FHMMs, the posterior of (3) is intractable, i.e. the num-
ber of states grows exponentially with the latent dimensionality
rendering the denominator of the posterior intractable. How-
ever, previously, statistical tools such as Variational Inference



[6] have been applied to reason about intractable posterior
distributions in the context of energy disaggregation [4],
[3]. The main idea of Variational Inference is to introduce
a tractable auxiliary distribution Qψ parameterized by the
variational parameters ψ. Inference is then turned into an
optimization problem, i.e. ψ is optimized in such a way that
Q best approximates P as measured by the KL-divergence.
Then, in order to perform inference on the intractable posterior
P inference can be carried out on Qψ instead. Since Qψ
is required to be tractable, usually additional independence
assumption are made and specifically, in the context of energy
disaggregation, in order to deal with the difficulty of dependent
latent variables, independence between latent states in the
posterior is assumed. Note that Qψ is usually required to be
simpler than P , i.e. to have less capacity than P .
However, because inference is carried out on a simpler distri-
bution, Variational Inference maximizes a lower bound on the
data likelihood p(x), i.e. it performs inference up to a constant
and it can be shown that this constant is the KL divergence
between P and Qψ . Note also that because Q is required to
be simpler than P , the KL divergence usually never becomes
0.
Furthermore, if independence between latent states is assumed
in Qψ , i.e. the posterior is factored as:

qψ(zt|xt) =
∏
i

fψ(xt)
zi
i (1− fψ(xt)i)

1−zi (4)

with f being bounded by [0, 1], Qψ is often overly simple.
It is easy to show that depending on whether the forward or
backward KL divergence is employed as a divergence measure,
the Q introduced in (4) either learns the mean or the mode of
P . Specifically, for energy disaggregation, such a unimodal Q
is unable to learn either this appliance or the other.
Consider a scenario with 2 two-state appliances with com-
parable power draw and an aggregate observation x′ that is
similar to the power consumption of each appliances. Thus
we can assume that for the posterior the following holds:

p(z|x′) =
(
0 0.5 0.5 0

)
with z =

(
0, 0 0, 1 1, 0 1, 1

)
Note that approaches that assume independence between latent
states of the auxiliary distribution fail at capturing the either-
or relationship between appliance states. Let ψ∗f and ψ∗b be
optimal variational parameters that minimize the forward and
backward KL-divergence between P and Q respectively. It can
be shown that:

qψ∗f (z|x
′) =

(
0.25 0.25 0.25 0.25

)
qψ∗b (z|x

′) =
(
0 1 0 0

)
or qψ∗b (z|x

′) =
(
0 0 1 0

)
It is easy to see that independent of the choice of divergence
measurement, Q cannot capture a significant proportion of the
information present in P , specifically the fact that one of the
appliances is active but not both or none.
That is why we argue that previous approaches based on
Variational Inference can be improved by a better choice of

Fig. 2. A graphical depiction of the cascaded neural networks that factorize
the joint probability distribution.

the auxiliary distribution. Thus, in this paper, we introduce a
tractable auxiliary distribution g that despite being tractable
can approximate any discrete distribution arbitrarily well. To
sum up, we propose an auxiliary distribution that has the
following characteristics:

1) No independence assumptions and therefore unlimited
capacity, i.e. in general, any multivariate Bernoulli dis-
tribution can be approximated arbitrarily well

2) The posterior can be trained efficiently based on samples
of the joint p(x, z)

3) Computing the mode and drawing independent samples
can be achieved in O(N)

In the next section we will provide a brief introduction into
Variational Inference and introduce FactorNet, the proposed
auxiliary distribution. We then conduct experiments in section
3 and conclude our findings.

II. VARIATIONAL INFERENCE AND FACTORNET

Variational Inference (VI) has experienced a recent surge in
attention from various academic communities [7], [8]. One of
the key advantages of VI over its alternatives such as Markov
Chain Monte Carlo [9] (MCMC) is speed. Since, as stated
earlier, VI translates statistical inference into an optimiza-
tion problem that produces a tractable distribution that best
approximates the true posterior, inference can be amortized,
i.e. time training the auxiliary distribution is spend once and
after training, inference can be carried out extremely fast. This
characteristic has direct implications in the context of energy
disaggregation: VI-based approaches allow for inference on
cheap hardware such as an electricity meter located in the
premises whereas MCMC would require remotely collecting,
storing and processing data. However, even in the asymptotic
regime, VI is an approximate inference technique whereas
(albeit slowly) MCMC is known to converge to the true
posterior. The quality of the VI-based approximation crucially
depends on the choice of the auxiliary distribution which can
be seen when investigating the commonly used Expectational
Lower Bound as the variational objective:

log p(x) =
∑
z

log p(x|z)p(z) (5)

=
∑
z

q(z|x)
q(z|x)

log p(x|z)p(z) (6)

≥ DKL[q(z|x)||p(z)] + Eq(z|x)[log p(x|z)] (7)

This inequality is tight if and only if p(z|x) = q(z|x),
however, this cannot be achieved when Q is simpler than



P . Furthermore note, that (7) is typically evaluated by Monte
Carlo techniques, i.e. by evaluating the expectation by sam-
pling from Q. Thus, in order for a Variational approach to
be successful, Q needs to be complex enough to be fit to P
tightly but simple enough to be sampled from efficiently.
For continuous distributions the problem of choosing a suitable
posterior distribution has recently been addressed by intro-
ducing normalizing flows[10], i.e. a succession of invertible
non-linear transformations of the random variable z. However,
for discrete random variables this approach does not seem
to be possible since the flow-operators are required to be
differentiable but to be mapping into the same domain (in this
case {0, 1}N ). Or in other words, the flow-operator cannot
at the same time be mapping into the discrete domain whilst
being smooth and differentiable.
Furthermore, another difficulty that arises for VI-based ap-
proaches is the fact that the true posterior is usually not obtain-
able, thus all updates need to be made based on samples of the
joint p(x, z). Typically, this is circumvented by maximizing
the variational objective (7), however, in the experience of the
authors (7) has suboptimal convergence properties.
Thus, in this paper, we follow a different strategy. We directly
learn the conditional factorization of the joint and show that
once the joint is factorized, obtaining the posterior can be done
efficiently. First, we note that any joint probability distribution
can be factored according to the chain rule of probabilities:

p(zt, xt) = p(zt,1, xt)p(zt,2, xt|zt,1)...p(zt,N , xt|zt,N−1, ..., zt,1)

=

N∏
n

p(zt,n, xt|zt,1:n)

The goal now is to learn this factorization. This is achieved by
approximating every factor of the probability distribution by
a neural network that takes the respective condition as input
and produces the conditional joint probability. Thus, let g be
the FactorNet distribution and fn and fn with 1 ≤ n ≤ N be
the N neural networks approximating the on and off factors
of the joint distribution, i.e.:

fi(xt, z1, ..., zi−1) ≈ p(xt, zi = 1|z1, ..., zi−1)
f i(xt, z1, ..., zi−1) ≈ p(xt, zi = 0|z1, ..., zi−1)

therefore:

p(zi = 1|xt, z1, ..., zi−1)

≈ fi(xt, z1, ..., zi−1)

fi(xt, z1, ..., zi−1) + f i(xt, z1, ..., zi−1)

=f∗i (xt, z1, ..., zi−1)

For the FactorNet joint distribution the following then holds:

g(zt, xt) =

N∏
i

fi(xt, z1, ..., zi−1)
zi

f i(xt, z1, ..., zi−1)
(1−zi)

and for its posterior:

g(zt|xt) =
N∏
i

f∗i (xt, z1, ..., zi−1)
zi

(1− f∗i (xt, z1, ..., zi−1))(1−zi)

Note that because the joint instead of the posterior probability
is factorized, fi(xt, z1, ..., zi−1)+ f i(xt, z1, ..., zi−1) 6= 1 and
that even though no independence assumption between latent
variables has been made, evaluating the joint as well as the
posterior probability is linear in the latent dimensionality as
opposed to exponential for evaluating P . Furthermore, we can
take independent samples from the posterior of G efficiently,
i.e. linear time. That is, we do not have to resort to Markov
Chain Monte Carlo techniques for drawing samples from g,
which would, in principle, allow for an efficient Monte Carlo
approximation of the expectation of (7) given the samples from
Q. See Algorithm 1 for how to sample from g(z|x).

Result: Sample or Mode of g(z|xt)
z = {};
for n = 1, ..., N do

pn = fn(xt, z)/(fn(xt, z) + fn(xt, z));
if pn > threshold then

Append 1 to z
else

Append 0 to z;
end

end
Algorithm 1: Outputs either an independent sample or the
mode of g(z|xt). If the mode is desired, set threshold = 0.5
and to a sample from g(z|xt) set threshold ∼ U [0, 1], i.e.
to a sample from a uniform distribution.

However, as stated above, (7) has suboptimal convergence
properties that can be circumvented by exploiting the fact that
G allows to efficiently obtain the joint as well as the posterior.
That is why we propose a learning objective that directly
minimizes the KL-divergence between the joint distributions,
i.e.:

L = −g(zt, xt) log
p(zt, xt)

g(zt, xt)

Note that we do not allow the gradients to flow into the frac-
tion, i.e. we treat g(zt, xt) in the denominator as a constant.

III. EXPERIMENTS

The efficacy of FactorNet is evaluated on a synthetic ex-
periment in the context of supervised waveform disaggrega-
tion. Specifically, we choose 8 appliances from the PLAID
dataset[11] and extract a single steady-state current waveform
for every appliance aligned by zero-crossing of the voltage
line. PLAID is a publicly available dataset containing high-
frequency current and voltage measurements of single ap-
pliances. Since PLAID is collected at 30kHz, approximately
500 samples are collected per voltage cycle. Thus a matrix
W ∈ R500×8 was extracted from PLAID and Figure 3 shows
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Fig. 3. The current waveforms used in the synthetic experiment taken from
PLAID datasets. Current waveforms were extracted by alignment to zero-
crossings in the voltage line.
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Fig. 4. (a) The true posterior log p(z|x) (b) The FactorNet poste-
rior log g(z|x) (c) The posterior log q(z|x) minimizing the forward KL-
divergence (d) The posterior log q(z|x) minimizing the backward KL-
divergence. Note that all probabilities were clipped between 0.001 and 0.999
to avoid log(0)

the waveforms used in the experiments. The 8 appliance wave-
forms were then mixed up, i.e. all 256 possible combinations
of waveforms were created and corrupted by Gaussian noise:
X = {Wz +N (0, 0.1I)|z ∈ {0, 1}8}. The probability of the
aggregate observation was defined as:

p(xt|zt) = N (xt|Wzt, 0.1I)

with W being a matrix containing the appliance waveforms
and I being the identity matrix. For the posterior thus holds:

p(zt|xt) =
N (xt|Wzt, 0.1I)∑
zN (x|Wz, 0.1I)

For every combination of z ∈ {0, 1}8 and x ∈ X , log p(z|x)
was computed and stored. See Figure 4(a) for a plot of the
resulting 256× 256 matrix.
Eight neural networks with a similar topology were created
with an input dimensionality of 500+(n−1), two intermediate
relu-layers with 512 hidden units and two-unit sigmoid output-
layer for f and f respectively. The network was trained by
minimizing L introduced earlier. The objective was minimized
by drawing mini-batches of 144 samples uniformly from
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Fig. 5. The KL-divergence DKL(p(z|x)||f(z|x)) summed over all x. In this
case f is either the FactorNet distribution g or the qψ∗

f
minimizing the forward

KL divergence. Note that qψ∗
b

minimizing the backward KL divergence did
not fit onto the plot with a divergence of approximately 3800.

the joint distribution p(z, x). The training procedure did not
assume knowledge of the posterior p(z|x) and was solely
presented with sampled of the joint. The performance of the
algorithm is compared to distributions qψ∗f and qψ∗b introduced
earlier, i.e. distributions that assume independence between
latent states in the posterior and minimize the forward and
backward KL-divergence respectively. The parameters ψ∗f and
ψ∗b were obtained with the knowledge of the true posterior
that usually is not available, thus we compare to distributions
in their globally optimal configuration.
Figure 4 shows a visual comparison of the different resulting
posterior distributions. One can see that FactorNet G captures
much more information present in P compared to Q in both
settings. Figure 5 emphasizes this fact as it shows the KL-
divergence over time. One can see that FactorNet reaches
a KL-divergence of practically 0 after approximately 100
iterations.

IV. CONCLUSION

We introduced an auxiliary distribution capable of approxi-
mating any multivariate Bernoulli distribution arbitrarily well
whilst at the same time having a functional form that is simple
enough to allow for drawing samples as well as computing the
mode of the posterior efficiently. The joint as well as posterior
distribution can be obtained in linear time by approximating
the chain rule factorization through a succession of neural
networks, which allows for using a training objective that min-
imizes the divergence between the joint distributions directly
circumventing the need for ELBO minimization. Positive
experimental results of the performance were obtained in the
setting of supervised waveform disaggregation.
However, experiments in which FactorNet incorporates tem-
poral dependencies have not yet been conducted. Note that
FactorNet was conceived out of the realization that auxil-
iary distributions that assume independence in the posterior
are detrimental when modeling temporal dependencies, i.e.
the posterior collapses onto a single state and most of the
uncertainty is falsely explained away. This prohibits tempo-
ral models from reversing previous decisions like e.g. the
Viterbi [12] algorithm would. FactorNets performance with
temporal dependencies needs yet to be determined.
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