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Abstract—Knowing the plug-level power consumption of each
appliance in a building can lead to drastic savings in en-
ergy consumption. Non-Intrusive Load Monitoring (NILM) is
a method for disaggregating power loads in a building to the
single appliance level, without using direct sensors or electric
meters. This paper addresses the issues of NILM inaccuracy in
the context of commercial and industrial buildings, by adding to
the problem data from a low-cost, non-dedicated, smart sensor
network. The SmartSense platform gathers environmental data
and allows us to make an approximate guess on the states of
some monitored appliances. The considered problem is the power
estimation of each device states, subject to partial knowledge of
the device states. The problem, formulated using linear algebra, is
solved to estimate the power load values of these steady states on
sliding windows of data with varying size. In this paper we show
the principle and interest of the approach, its limited complexity,
and its applicability to real datasets.

Index Terms—Smart Buildings, Non-Intrusive Load Monitor-
ing, Sensor Network, Convex Optimization.

I. INTRODUCTION

Developing smarter/greener electric grids has been an ex-
panding field of research for the past decades. One of the
essential requirements for energy utilities is the knowledge
of power consumption patterns at single-appliance level. To
do so without using an individual power meter for each
appliance, Non-Intrusive Load Monitoring (NILM) consists
in disaggregating electrical loads by examining the appliance
specific power consumption signature within the aggregated
load single measurement. Therefore, the method is considered
non-intrusive since the data is collected from a single electrical
panel outside of the monitored building. Thus, NILM has been
a very active field of research for the past two decades with
renewed interest in the last years.

A lot of research has been made on residential power
disaggregation, due to the growth of home smart meters, and
likely uniqueness of most relevant appliances. Nevertheless,
industrial or commercial buildings present many difficulties
for NILM techniques, such as the multiplicity of users and
appliances or specific devices. Some companies already offer
solutions to evaluate and reduce consumption of buildings
and, recently, for personal residence. However, a key-point
of NILM algorithms is the power estimation of each device
states. Of course, a dispersion exists for a given type of load
and it is obvious that a fridge will be different on each home.
Moreover, it permits one to detect an abnormal behaviour and
alert on a possible breakdown. In this work, we propose to

apply numerical solver using linear algebra, formulated with
partial knowledge of the device states. Information to solve the
problem comes not only from the total power consumption, but
also from low-cost wireless sensors. Indeed, the algorithm will
be applied on our platform called SmartSense which associates
NILM with various sensors.

The paper is organized as follows. Section II briefly intro-
duces the state of the art. Section III formulates the problem,
while Section IV presents the used numerical solving methods.
Results are described in Section V before to present some
methods to reduce complexity. Finally, Section VI draws some
conclusion.

Please note that the work around this dataset is still in
progress, and the results shown in this paper are yet in-
complete. Further results will be provided at the time of the
workshop and the complete dataset will be released soon.

II. RELATED WORK

Previous work on Non-Intrusive Load Monitoring have been
initiated by G.W. Hart [5] more than two decades ago when
he introduced the concept of measuring individual appliance
consumption without relying on direct meters. Since, re-
searchers strived to find ways to improve NILM accuracy and
solve its limitations. Various approaches have been considered
with interesting results. Zeifman [13] used a probabilistic
approach to tackle this challenge. Pattern recognition approach
has been studied in [4] for major end-uses in residential
environments. Recently, machine learning methods, especially
deep neural networks, have shown significant improvements in
classification problems over the last few years and was applied
to improve NILM in [3], [6]. Furthermore, disaggregation
motives have been discussed in [1] with remarkable results
on the potential annual energy savings due to an individual
appliance feedback (more than 12%). This confirms both
environmental and economical purposes of NILM.

On the other hand, the authors in [14] claimed that envi-
ronmental sensing and additional heterogeneous information
can be exploited to address some of the prevailing challenges
faced by the current NILM techniques, however at the cost
of increased complexity. Assuming that, load monitoring with
extra information, other than the power consumption of the
whole building, seems like the way to go. Moreover, with
the increase in the presence of smart sensors in buildings
for multiple purpose, collecting this kind of data without



additional installation has become more and more plausible.
This can explain the recent interest in this kind of approach.
For example, in [2], the authors suggested incorporating
time-of-day usage patterns into disaggregation algorithms, to
improve accuracy and reduce computational complexity. We
can observe that while [14] predicted that complexity would
be increased with extra information, whereas some relevant
information can directly reduce NILM algorithm execution
time.

Furthermore, in [10], the author proposed several methods
to improve NILM algorithm performance with the use of data
extracted from sensors networks. Using these environmental
sensors, and testing several algorithms, the authors concluded
that monitoring a few appliances could drastically improve
NILM performance. Detecting the state of an appliance with
the adequate sensors can be a low-complexity task. For ex-
ample, the operation of a workplace printer may be readily
recognized with an audio sensor while lights can be easily
monitored by sensors as well.

Assuming the state of an appliance is known, an inter-
esting task is to estimate the characteristics of steady-state
power of an appliance, on a length-significant power trace. In
their work around ViridiScope [8], the authors implemented
a power monitoring system by indirect sensing with self-
learning automatic calibration of each sensor. Our objective
is to propose a multi-purpose, low-cost sensor network to
improve the accuracy of NILM algorithms with information
about the environment rather than dedicated sensing.

III. DISAGGREGATING APPLIANCE POWER LOADS

A. Problem Statement
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Fig. 1. Representation of the role of power load estimation in the full scope
of the SmartSense usage for NILM

A basic problem of NILM is disaggregating the main power
load of a building. We consider a low-rate sampling (typically
1Hz) and our approach is optimization-based. It consists in
minimizing the difference between the main power meter
output and the sum of disaggregated reconstructed appliances.
We use the term disaggregated for an appliance whose steady-
state temporal matrix is known, and steady-state power values
in Watts (W) need to be estimated. The problem can then be
written as

min
wi,j

‖xtot(t)−
N∑
i=1

Mi∑
j=1

wi,j × si,j(t)‖d (1)

with
• xtot the main power of the building,
• N the number of appliances,
• Mi the number of steady states per appliance i,
• wi,j power consumption of appliance i in steady-state j,
• si,j(t) ∈ {0, 1} a boolean equal to 1 when appliance i is

in state j, and
• ‖.‖d a given norm. In this work we consider l1-norm or

absolute value.
Note that the optimization-based NILM approach often tries
to solve the mirror problem of (1)

min
si,j(t)

‖xtot(t)−
N∑
i=1

Mi∑
j=1

wi,j × si,j(t)‖d (2)

to estimate the states of the devices, knowing each individual
power load.

To sum up, knowing partial information on the states of the
appliance, we aim to estimate the power values of appliance
wi,j .

B. Environment Description

To estimate the state matrix of an appliance, we use Smart-
Sense, a fine grained, multi-modal sensor network platform.
SmartSense is research platform based on a sensor network
designed for various data acquisition. Each network node
is composed of fifteen sensors to retrieve a wide range of
information, including:
• Video sensors (Video-Graphic-Array (VGA) and Infra-Red

(IR) cameras) and audio sensors.
• Radio sensors (2.4 GHz, Sub-GHz, and Ultra-Wide-Band)

to sense the radio-frequency band occupancy and to estimate
positions.

• Air quality sensors (temperature, humidity, carbone dioxyde
concentration, air pressure, etc.).

• Light sensors (Ultraviolet (UV) and Red-Green-Blue-White
(RGBW)).

• Distance sensor (telemeter).
SmartSense is composed of more than 150 nodes disseminated
in rooms ranging from 9 to 40 square meters and corridors.
The mesh of the sensor network is quite dense, with from two
to four nodes in each room, according to the room surface.
The frequency of the data acquisition will vary according to
the data nature. For example, air quality sensor data do not
need to be retrieved as frequently as audio or light sensor data.

Moreover, since the whole raw data cannot realistically be
retrieved from the sensor nodes to the main system, some pre-
processing is performed by the network node itself. Therefore,
the pre-processing has to be chosen carefully, according to the
data final use. Not all of the above sensors are relevant for
NILM. The purpose of the SmartSense platform is to provide
scientists with a wide diversity of data for research around
the topic of Smart Buildings. Since SmartSense data is not
yet available (the platform should be deployed in 2018), our
algorithms have first been tested on the Reference Energy
Disaggregation Data Set (REDD) [9] and we hope to extend
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Fig. 2. The three steps of our experimental protocol to estimate power loads from main power trace and validating the results with individual power loads
references

to other datasets such as the UK-DALE dataset [7] and the
AMPds [12].

To sum up, a first estimation of the states matrix is obtained
via an environmental sensors network which, after retrieving
the data Dk,l with k the room identifying number, and l the
node sensor number in the room, gives us a first rough estimate
of the monitored appliances states (see Figure 1).

IV. SOLVING THE DISAGGREGATION PROBLEM

In the case of NILM, SmartSense raw data will be used such
as described schematically in Figure 1. The total power of the
building xtot is read from a smart power meter sampled at
roughly 1 Hz. The raw environmental data (audio, luminosity,
etc.) Dk,l is acquired by SmartSense nodes. For network
load and privacy issues, this raw data is not retrieved from
the sensor by the main system. Instead, each node processes
individually a rough estimation of the state š of the monitored
appliances. Given š and xtot, a classic NILM disaggregation
algorithm is run to determine a better estimation of the partial
steady states ŝ. Given ŝ and xtot, the individual power load
estimation of steady states determines ŵ for each monitored
appliance, which improves the accuracy of another iteration of
the previous step. A few steps can be made for each sample
of xtot, thus increasing accuracy at the cost of computation
complexity.

As mentioned in Section III, our problem is based on study-
ing the steady states of various appliances. To evaluate the
accuracy of our algorithm, we use the experimental protocol
depicted in Figure 2 and detailed below.
• First, the raw data are extracted from REDD. The chan-

nel i.dat files contain time-stamped power metering infor-
mation for single appliances or small circuit of same type
appliances, for example a small lighting circuit or kitchen
outlets.

• To define a reference for appliance steady states, we then
process each appliance individually with a python script.
To perform this, we use a custom 1-D edge detection
algorithm for detecting steady states locations. Then, the
whole individual power trace is clustered into a list of
known steady states, to simulate the a priori knowledge of
appliances states. Results of this experiment are collected
and used as a reference for our further experiments, due
to the fact that they are obtained from the individual power
traces of REDD appliances, and thus are more accurate than
disaggregated power characteristics. These results show that,
although they are similar from one appliance (of the same

function) to the other, identifying appliances solely on these
steady-state values is not a trivial task due to their strong
variations.

• Knowing the state matrix of studied appliances and
main power, we use the GNU Linear Programming Kit
(GLPK) [11] to execute an optimization script. To solve
the optimization problem, we use the simplex algorithm,
which performs best when upper and lower bounds on the
optimization solution are known.

V. REDUCING OPTIMIZATION COMPLEXITY

Since linear optimization can be a computing-intensive task
and it is desirable to run the actions described in Figure 2 in
real time, the complexity of the problem must be reduced as
much as possible without affecting the accuracy of the power
estimation or the disaggregation. Two methods are introduced
to reduce complexity: windowing the power trace, and pre-
processing the data according to the state matrix to remove
redundant information.

A. Windowing

To reduce the size of the optimization problem, and there-
fore to allow for the application to run in real-time, data are
processed inside a time window. The first issue to address
when using windowed data instead of the whole available
dataset is how to take account of information from the previous
windows when processing the optimization problem of the
next window. To achieve this, in the GMPL optimization file,
we set lower and upper boundaries based on the previous
optimized results, and an arbitrary tolerance, which is typically
set around ±10%.

The next important step is how to choose the size of the
window. Through our experiments, we noticed that the first
window should be significantly longer, e.g. one day, while
the next windows could be significantly lower, e.g. half an
hour, without losing accuracy. This also allows for a dynamic
tracking of characteristic power loads, which can be interesting
for detecting quickly and pinpointing temporally a faulty
appliance. Different window lengths and their corresponding
execution times are detailed in Figure 3.

While shorter windows are useful for a dynamic monitoring
of our appliances, a too short window can make it harder
to observe all the states of an appliance and obtain the
characteristic steady states values. Figure 4 collects the number
of observed states, relatively to the window length.
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Fig. 3. Optimization script execution time depending on the window length
run on an Intel(R) Core(TM) i7-6600U CPU 2.60GHz with approximately
three seconds between each sample.
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Fig. 4. Evolution of the number of states observed relatively to the window
observation length for 100 random samples for various bathroom appliances.
All appliances have a total of four different states. This hints that even a long
window length cannot guarantee a complete observation of all the states of
the appliances.

B. Data Pre-Processing

Even when using small windows of data, computation can
be sped-up by pre-processing the data. To perform this task,
we scan the data window looking for duplicate samples, i.e.
time samples with the very same state row, and a xtot similar
power value with a very low tolerance, e.g., 1W. If a duplicate
of a row is found, we remove the duplicate and increment a
duplicate counter of the state/power value combination. This
is a sort of compression of the states matrix, with a loose
tolerance (1 W). Pre-processing is done after the computation
of the states matrix (see Figure 2), and tends to reduce the
size of this matrix with the intent to reduce both linear
optimization computation time and the storage requirement of
NILM. This pre-processing is the most time consuming task of
our program, but the execution time is drastically decreased
by this technique which is no more than a trivial duplicate
search.

VI. CONCLUSION

In this paper, we present ongoing work around Non-
Intrusive Load Monitoring using a hybrid reverse approach
via the SmartSense platform. Environmental information is
used to infer the steady states of monitored appliances, and

an optimization-based method is used to estimate the charac-
teristic power loads of the steady states. While our method has
been used on labeled datasets for the moment, future work will
include the uncertainty around steady states, and processing of
environmental SmartSense data.
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