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ABSTRACT

Disaggregating solar power from net meter data has got traction
in recent years as utility companies are seeking ways to identify
behind-the-meter solar photovoltaics, improve their planning and
operation practices, and apply variable pricing to distributed solar
generation. In this notes paper we survey the literature on solar
disaggregation and describe datasets that can be used for evaluating
disaggregation methods. We identify limitations and threats to
validity of this research, and discuss existing challenges and how
they can possibly be addressed. These open challenges highlight
the need for the development of advanced techniques and the use
of other data sources to solve the solar disaggregation problem.

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; « Computing methodologies — Machine learn-
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1 INTRODUCTION

Solar photovoltaic (PV) is currently enjoying the fastest growth
of renewable sources worldwide thanks to declining costs of solar
projects and government tax credits. Solar PV generation in end-
use sectors in the U.S. is anticipated to increase more than fourfold,
from 41 billion kilowatt-hours (1% of U.S. generation) to 182 billion
kilowatt-hours (4% of U.S. generation) by 2050 [10]. The large-
scale adoption of distributed PV systems and the rising number of
prosumers present new challenges for planning and operation of
power distribution grids, from the management of voltage to the
configuration of protection systems and increased wear and tear on
utility equipment. In light of this, utility companies seek innovative
solutions to identify unregistered solar panels, and estimate their
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peak capacity and real-time production. Since most distributed PV
systems are installed behind the meter (BTM), net meter data from
advanced metering infrastructure (AMI) is the only type of data that
is commonly available. In fewer cases, substation-level and feeder-
level voltage and current phasor measurements can be obtained
from the supervisory control and data acquisition system (SCADA)
or distribution-level phasor measurement units (DPMUs) [16].

Several methods have been proposed to date to estimate the
peak generation capacity and real-time production of BTM solar
systems. For example, satellite and aerial imagery has been used to
identify solar PV systems and estimate their physical deployment
characteristics (size, tilt, orientation, etc.) [9]. This approach can
provide only a rough estimate of the peak capacity of PV instal-
lations and cannot accurately estimate real-time solar generation.
Another line of work relies on utilizing PV generation data from a
small number of PV sites that are metered separately to estimate the
total solar production in a given geographical area [22, 23]. These
methods require the knowledge of the total installed capacity of
PV systems in that area to estimate PV generation. In this paper,
we survey and classify methods based on source disaggregation, a
technique that has been widely used for non-intrusive load moni-
toring (NILM) [19]. These methods, if proven reliable, can eliminate
the need for a separate meter (in addition to the standard meter)
in jurisdictions where customers with installed solar systems are
compensated using feed-in tariff and power purchase agreement.

Despite the growing literature on solar disaggregation there are
still several key challenges, ranging from the lack of fine-grained
data and an evaluation toolkit to latent flexibility, which hinder the
application of these methods in practice. Furthermore, the increased
BTM solar penetration brings in new challenges for NILM as the
smart meter reading may not be equal to the sum of the power
demand of individual appliances in the daytime. This indicates the
need to disaggregate solar power from net meter data before trying
to separate the household demand into the constituent appliances,
and calls for incorporating solar disaggregation algorithms in NILM
software, such as NILMTK [3].

This paper aims to elaborate on the open challenges in this
area and put forward recommendations to address them in future
work. These challenges underline the scope for developing new
techniques for solar disaggregation and justify the effort to collect
data from a larger set of solar installations where solar generation
can be separately metered.

2 PROBLEM DEFINITION

Solar disaggregation is the problem of estimating solar generation
from net load measurements which can be obtained at different
levels of aggregation. Customer-level solar disaggregation is to
separate the power consumption measured by a smart meter into
household (or business) demand and solar generation. Feeder-level
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(or substation-level) solar disaggregation concerns separating the
overall solar generation at the feeder from the total active power
consumption of loads connected to that feeder.

Given a sequence of real power measurements P =
{P1, Py, ..., Pr} from a smart meter or a DPMU, the problem con-
cerns estimating aggregate solar generation S; and aggregate de-
mand L, at time 7 provided that P; = L; — S; + By + o (Vt €
{1,2,...,T}), where L;,S; > 0, o; represents the measurement
noise and potential losses, and B; represents battery charge (B; > 0)
or discharge (B; < 0) power. Most related work only considers stan-
dalone PV systems without storage, hence B; is assumed to be zero
at all times. Note that the disaggregation algorithm is offline when
7 < T, and it is an online algorithm otherwise.

2.1 Differences with NILM

Solar disaggregation differs from NILM in that solar generation
varies significantly and continuously over time. Most NILM ap-
proaches, on the contrary, assume that the operation of an appli-
ance can be divided into a finite number of operating states (e.g.,
ON, OFF, standby), and the power draw in each state is known and
constant. Thus, they cannot disaggregate the demand of Continu-
ously Variable Devices from the net demand measured at the main
electrical panel [19].

3 DATASETS

Solar disaggregation studies use net metering data collected at dif-
ferent levels of aggregation. The customer-level data is available
through AMI while the feeder-level data is typically collected by
DPMUs or the SCADA system if there is such instrumentation
beyond the distribution substation. For validation purposes, addi-
tional gross meters need to be installed behind the utility meter to
separately measure the solar inverter output.

The most popular dataset which has been used for evaluating
solar disaggregation methods is released by Pecan Street Inc. [12].
It contains customer-level measurement of solar generation and
household demand for a total of 73 homes located in three states
in the U.S. (New York, California, and Texas). Measurements cover
three granularity levels, namely 1 second, 1 minute and 15 minutes.
This is useful to evaluate a disaggregation algorithm at different
temporal resolutions as we do in this paper. Another relatively
large dataset is released by Ausgrid, a utility company in Sydney,
Australia [1]. The half-hour household consumption and solar out-
put data are collected from 300 customers with rooftop solar PV
systems. The dataset spans 3 years, from July 1, 2010 to June 30,
2013, and contains the actual solar panel capacity for each customer.
Finally, the SunDance dataset [20] includes hourly net meter, solar
generation, and weather data for 100 sites in North America.

To our knowledge, the above datasets are the only publicly avail-
able datasets that contain both solar generation and home load
data. However, there are several residential load datasets which are
published online [4, 11]. Real solar generation data from specific
PV sites can be found in [20, 26]. Synthetic PV output can also be
simulated using the System Advisor Model (SAM) developed by the
National Renewable Energy Laboratory according to the real solar
irradiation data and other weather data [18]. Therefore, a synthetic
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net metering dataset can be created easily by combining home load
and solar generation from different sources.

Ref. [12] Ref.[2] = Ref.[26] + Ref.[6]
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Figure 1: CV of 4 disaggregation methods at different tempo-
ral resolutions. Each small marker shows the result of a sin-
gle home. Each large marker indicates the CV of one method
averaged over 5 homes. The top figure shows performance
results from 2018/06/01 to 2018/06/30 and the bottom one
shows performance results from 2018/12/03 to 2018/12/30.

4 APPROACHES TO DATE

Several solar disaggregation techniques have been proposed to date
drawing on algorithms from machine learning, signal processing,
and state estimation. Table 1 summarizes these techniques. The
vast literature on behind-the-meter solar disaggregation can be
categorized into two classes based on how BTM PV systems are
modelled. In particular, in model-based techniques PV systems are
modelled using a physical PV model, while data-driven techniques
develop a black-box PV model leveraging the training data.

4.1 Data-driven Approaches

With the growing adoption of different metering technologies in
distribution grids, data-driven methods have become increasingly
popular. Kara et al. [15] developed a linear proxy-based estimator to
disaggregate feeder-level solar generation from the aggregate real
power at the substation, using reactive power data measured by a
DPMU and PV generation profiles from nearby metered PV systems.
A similar method was proposed by Tabone et al. to tackle customer-
level solar disaggregation [27]. But instead of using reactive power
data to estimate the aggregate home load, they use temperature and
time of the day. Both methods leverage a contextually supervised
source separation model [29] with different features. But the lack
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Table 1: Related work on disaggregation of behind-the-meter solar generation

Reference ‘ Level ‘ Rate ‘ Category Used Data Approach

Ref. [6] (Ref. [2]) Customer | 1hour | Model-Based | Lon. & Lat. of target home, Weather | Physical model, Machine Learning
Ref. [15] (Refs. [16, 28]) | Feeder 1 min Data-Driven | NS, Reactive power at the feeder Convex Optimization

Ref. [27] (Ref. [14]) Customer | 15min | Data-Driven | NS, Ambient temperature Convex Optimization

Ref. [7] (Ref. [8]) Customer | 15min | Data-Driven | NL, Irradiance Convex Optimization

Ref. [25] Feeder Multiple | Data-Driven | Local GHI observation Convex Optimization

Ref. [13] Customer | 15min | Model-Based | Weather, GHI, DNI, DHI Physical model, Optimization

Ref. [17] Customer | 1 hour Data-Driven | NS, SC, Weather Machine Learning

Ref. [21] Feeder 30 min | Data-Driven | Ambient temperature, GHI State Estimation

Ref. [5] Feeder 1 hour | Data-Driven | NS, NL Optimization

NS: output of a nearby solar installation; NL: consumption of a nearby home; SC: output of a solar installation and its peak capacity (not necessarily in the same region);

of data from separately-metered nearby PV installations presents a
barrier to the application of these methods at scale.

Cheung et al. [7] model demands of customers with PV systems
using a mixture model of representative customers without PV sys-
tems which are selected via clustering. Considering the presence of
battery storage, the authors improve their method in [8] by adding
a “hidden battery” model for the operation of BTM battery. Bu et
al. [5] utilize separately metered load and PV generation data of
some customers to disaggregate higher-level net load using a game
theoretic approach. They formulate solar disaggregation as a nested
bi-layer optimization problem. This method adaptively updates the
estimation in each time step and shows robustness to unobserved
events and abnormalities (e.g., PV system failures). Leveraging the
fact that customer-level net load curves have different shapes under
different weather conditions, Li et al. [17] extract multiple features
and feed them to machine learning models to infer PV capacity and
estimate solar generation.

In another line of work, Sosan et al. [25] disaggregate the solar
generation in the frequency domain given that the spectral density
of the aggregated power flow is similar to the measured PV genera-
tion. The result of this method is promising enough to encourage
researchers to use frequency domain analysis to address the dis-
aggregation problem especially at the feeder-level where higher
resolution data might be available. Shaffery et al. [21] propose a
Bayesian Structure Time Series (BSTS) model for solar disaggrega-
tion. Unlike other data-driven methods, it can provide probabilistic
estimation of PV generation and load consumption, allowing the op-
erator to determine necessary reserves. However, the slow training
process limits its real-world application.

4.2 Model-based Approaches

Compared to data-driven approaches, model-based approaches re-
quire no or just a few data points for calibration. They learn the
deployment characteristics of PV systems (e.g., capacity, tilt, orien-
tation), which is useful for both real-time estimation and long-term
forecasting [13]. Chen et al. [6] design a model-based solar disag-
gregation technique which requires the knowledge of the home’s
location (latitude and longitude) and a small amount of historical
net meter data. A clear sky generation model, which estimates the
maximum generation under clear sky situation, is used together
with a physical PV model to estimate PV generation. Since net
load data is the only data available from the household, the clear

sky generation model training relies on net load data collected
from the target home when it is unoccupied on a sunny day (i.e.,
when the home load is at its minimum and solar generation is at
its maximum). But this data is not always available for a customer.

To overcome the above shortcomings, Kabir et al. [13] develop
an unsupervised solar disaggregation framework which does not
rely on location information or net load data collected under cer-
tain conditions. They integrate a physical PV model with a Hidden
Markov Regression model for estimating home load. Starting with
an initial guess of the key parameters of the physical model, they
iteratively estimate solar generation and home load given the mea-
sured net load. The main drawbacks of this method are that it takes
many iterations to converge and is therefore quite slow, and that
accurate disaggregation requires accurate weather and irradiance
data to be collected from the vicinity of target homes.

5 CHALLENGES

Despite several efforts to date to disaggregate solar power from net
meter data there are several challenges which need to be addressed.
Low temporal resolution of customer-level data: Data col-
lected by smart meters is coarse-grained (typically 1 sample every
15 minutes). This dramatically increases the difficulty of capturing
inherent variability in solar generation and household demand, and
prevents researchers from successfully separating frequency com-
ponents of the two signals. High-frequency DPMU data can support
the use of signal processing techniques. But since these sensors are
typically installed at higher levels of aggregation in the distribution
grid, fluctuations smooth out further due to aggregation.

To understand how the temporal resolution of input data could
affect the performance of solar disaggregation algorithms when ap-
plied to data collected for individual customers, we run two model-
based [2, 13] and two model-free [7, 27] approaches! proposed in
the literature to disaggregate net meter data of five randomly se-
lected homes in Austin, Texas. We run each algorithm three times
for a given home, each time using the net meter data with a different
resolution (1min, 15min, and 1hr). We obtain the net meter, home
load, and PV generation data for a month in summer and a month in
winter from the Pecan Street dataset and pull in 5-minute weather
data (GHI, GNI, DNI, Temperature, etc.)2 for the same periods for a

!We implemented [7] from scratch and [13] based on PV modelling code provided by
the authors. We used the implementations of [2, 27] we found on authors’ websites.
2For the 1min scenario, we use weather data of the closest 5 minute interval.
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location in Austin® (30.267°N,-97.743°E) from the Solcast API [24].
Note that a subset of these features are needed by each algorithm
as specified in Table 1. We do not re-tune the (hyper)parameters
of each algorithm across the three runs, and report coeffecient of
variation (CV) of root-mean-square error (RMSE) which is RMSE
normalized by the mean value of the measurements. For fair com-
parison, we only include the estimates at the top of the hour in the
calculation of CV as they are available for all three runs. As shown
in Figure 1, increasing the temporal resolution does not improve
the reliability of estimates in general. We believe this is because the
algorithms are not designed to take advantage of high-resolution
net meter data as it cannot be obtained from AMI today.

Abrupt and gradual changes in the output of PV systems: A
number of different events can change the power output of a PV
system over time. For example, inverter failure and panel cleaning
will cause the PV output to change rapidly in a short period of time;
while soiling on solar panels (i.e., the dry deposition of dust and
light absorbing particles on the surface of the panel) will gradually
decrease its power output. Traditional PV models cannot track these
changes to adjust the estimated PV generation.

Latent flexibility: The continued rise in the adoption of BTM en-
ergy storage, demand-side management technologies, and smart
thermostats in homes and buildings creates problems for most
data-driven solar disaggregation models. This is because these com-
ponents can change the load profile, but control policies used or
price signals sent to them are not typically known when the dis-
aggregation problem is solved. This latent flexibility is ignored in
most previous work on solar disaggregation. An exception is [8]
which addresses the disaggregation problem in the presence of a
BTM battery. It also shows that state-of-the-art approaches cannot
accurately perform disaggregation when there is a BTM battery.
Thus, future work should focus on developing disaggregation al-
gorithms that can remove effects of latent components from net
meter data through identification of control signals and actions.
Lack of datasets containing different types of households:
Most datasets that can be used for evaluating solar disaggrega-
tion methods do not include information about households that
participate in demand-response (DR) programs, installed smart
thermostats or BTM solar-plus-storage systems in the metadata.
Specifically, from the three datasets described in Section 3, only
the Ausgrid dataset records whether the customer participated in a
DR program. Even when this information is available, it is unclear
what control or price signals were sent to those households.

6 RESEARCH OPPORTUNITIES

Several interesting research questions are still to be addressed, some
of which will require overcoming the challenges described in the
previous section. We outline these opportunities below.

Fusion of customer-level and feeder-level data: In recent years
high frequency (up to hundreds of Hz) measurements of real and
reactive power have become available thanks to the deployment
of DPMUs in the secondary side of the substation. Fusing this data
with smart meter data and incorporating pseudo-measurements in

3The Pecan Street dataset does not include the home address, hence we queried weather
data for a randomly selected location in downtown Austin.
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the disaggregation method is an interesting direction that can im-
prove the overall accuracy and allow for running the disaggregation
method in an online fashion.

Dynamic disaggregation algorithms: As noted in the previous
section, the power output of a PV system can change over time
due to various reasons. Thus, the PV models trained/calibrated
using historical data can no longer provide accurate estimates of
solar generation. Dynamic disaggregation enables researchers to
simultaneously solve system identification and solar disaggregation
problems, presumably at two different timescales. This way the
changes in the power output of a PV system can be detected and
the PV models can be updated accordingly.

Single-channel blind source separation (BSS) which separates a
set of source signals from a single mixed signal is a perfect fit for
the solar disaggregation problem. Hence, different techniques used
in BSS can be modified and applied to this problem.

Utilizing various data sources: As the Internet of Things (IoT)
devices are becoming ubiquitous across the building sector, there is
ahuge potential to use the data collected by their embedded sensors
to better predict the home load. For example, the occupant presence
and actions have an impact on the household demand. Hence, utiliz-
ing the occupancy data which is recorded by smart thermostats or
plug load energy use collected by submetering devices can improve
the accuracy of several data-driven disaggregation techniques.
Building a framework for evaluating solar disaggregation
algorithms: The lack of publicly available datasets that contain
mixed and unmixed signals, open-source implementation of bench-
mark algorithms, and consensus on the evaluation metrics* has
made it difficult to compare the methods proposed for solar disag-
gregation. We believe a comprehensive evaluation toolkit, similar
to NILMTK [3], can greatly facilitate research in this area. Alter-
natively, benchmark solar disaggregation algorithms can be added
to existing NILM evaluation frameworks; this would make sense
since solar generation must be separated from net meter data before
running NILM algorithms.

7 CONCLUSION

Distributed PV generation is growing rapidly in most developing
and developed countries. This will create new challenges for utility
companies and complicate planning and operation of residential
distribution networks. In the absence of elaborate instrumentation
beyond the distribution substation, solar disaggregation techniques
can help utilities get a better understanding of the overall solar
generation, identify hotspots, and upgrade their equipment. In this
paper, we surveyed prior work in this area, identified key challenges
that must be overcome, and presented opportunities for improving
the accuracy of solar disaggregation techniques. We hope that this
work contributes to a broader research effort in this area.
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